Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregor Bucher is active.

Publication


Featured researches published by Gregor Bucher.


Current Biology | 2002

Parental RNAi in Tribolium (Coleoptera).

Gregor Bucher; Johannes Scholten; Martin Klingler

We thank D. Arendt and J. Wittbrodt for communication of unpublished results and comments on this manuscript. We thank A. Beermann, S. Brown and their collaborators for Dll and mxp plasmids. This work was supported by DFG and HFSP grants.


Genome Biology | 2008

Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium

Yoshinori Tomoyasu; Sherry C. Miller; Shuichiro Tomita; Michael Schoppmeier; Daniela Grossmann; Gregor Bucher

BackgroundRNA interference (RNAi) is a highly conserved cellular mechanism. In some organisms, such as Caenorhabditis elegans, the RNAi response can be transmitted systemically. Some insects also exhibit a systemic RNAi response. However, Drosophila, the leading insect model organism, does not show a robust systemic RNAi response, necessitating another model system to study the molecular mechanism of systemic RNAi in insects.ResultsWe used Tribolium, which exhibits robust systemic RNAi, as an alternative model system. We have identified the core RNAi genes, as well as genes potentially involved in systemic RNAi, from the Tribolium genome. Both phylogenetic and functional analyses suggest that Tribolium has a somewhat larger inventory of core component genes than Drosophila, perhaps allowing a more sensitive response to double-stranded RNA (dsRNA). We also identified three Tribolium homologs of C. elegans sid-1, which encodes a possible dsRNA channel. However, detailed sequence analysis has revealed that these Tribolium homologs share more identity with another C. elegans gene, tag-130. We analyzed tag-130 mutants, and found that this gene does not have a function in systemic RNAi in C. elegans. Likewise, the Tribolium sid-like genes do not seem to be required for systemic RNAi. These results suggest that insect sid-1-like genes have a different function than dsRNA uptake. Moreover, Tribolium lacks homologs of several genes important for RNAi in C. elegans.ConclusionAlthough both Tribolium and C. elegans show a robust systemic RNAi response, our genome-wide survey reveals significant differences between the RNAi mechanisms of these organisms. Thus, insects may use an alternative mechanism for the systemic RNAi response. Understanding this process would assist with rendering other insects amenable to systemic RNAi, and may influence pest control approaches.


Development | 2004

Divergent segmentation mechanism in the short germ insect Tribolium revealed by giant expression and function

Gregor Bucher; Martin Klingler

Segmentation is well understood in Drosophila, where all segments are determined at the blastoderm stage. In the flour beetle Tribolium castaneum, as in most insects, the posterior segments are added at later stages from a posteriorly located growth zone, suggesting that formation of these segments may rely on a different mechanism. Nevertheless, the expression and function of many segmentation genes seem conserved between Tribolium and Drosophila. We have cloned the Tribolium ortholog of the abdominal gap gene giant. As in Drosophila, Tribolium giant is expressed in two primary domains, one each in the head and trunk. Although the position of the anterior domain is conserved, the posterior domain is located at least four segments anterior to that of Drosophila. Knockdown phenotypes generated with morpholino oligonucleotides, as well as embryonic and parental RNA interference, indicate that giant is required for segment formation and identity also in Tribolium. In giant-depleted embryos, the maxillary and labial segment primordia are normally formed but assume thoracic identity. The segmentation process is disrupted only in postgnathal metamers. Unlike Drosophila, segmentation defects are not restricted to a limited domain but extend to all thoracic and abdominal segments, many of which are specified long after giant expression has ceased. These data show that giant in Tribolium does not function as in Drosophila, and suggest that posterior gap genes underwent major regulatory and functional changes during the evolution from short to long germ embryogenesis.


Development Genes and Evolution | 1998

Pair-rule and gap gene mutants in the flour beetle Tribolium castaneum

Florian Maderspacher; Gregor Bucher; Martin Klingler

Abstract Early pattern formation in the Drosophila embryo occurs in a syncytial blastoderm where communication between nuclei is unimpeded by cell walls. During the development of other insects, similar gene expression patterns are generated in a cellular environment. In Tribolium, for instance, pair-rule stripes are transiently expressed near the posterior end of the growing germ band. To elucidate how pattern formation in such a situation deviates from that of Drosophila, functional data about the genes involved are essential. In a genetic screen for Tribolium mutants affecting the larval cuticle pattern, we isolated 4 mutants (from a total of 30) which disrupt segmentation in the thorax and abdomen. Two of these mutants display clear pair-rule phenotypes. This demonstrates that not only the expression, but also the function of pair-rule genes in this short-germ insect is in principle similar to Drosophila. The other two mutants appear to identify gap genes. They provide the first evidence for the involvement of gap genes in abdominal segmentation of short-germ embryos. However, significant differences between the phenotypes of these mutants and those of known Drosophila gap mutants exist which indicates that evolutionary changes occurred in either the regulation or action of these genes.


BMC Biology | 2009

Large-scale insertional mutagenesis of a coleopteran stored grain pest, the red flour beetle Tribolium castaneum, identifies embryonic lethal mutations and enhancer traps

Jochen Trauner; Johannes B. Schinko; Marcé D. Lorenzen; Teresa D. Shippy; Ernst A. Wimmer; Richard W. Beeman; Martin Klingler; Gregor Bucher; Susan J. Brown

BackgroundGiven its sequenced genome and efficient systemic RNA interference response, the red flour beetle Tribolium castaneum is a model organism well suited for reverse genetics. Even so, there is a pressing need for forward genetic analysis to escape the bias inherent in candidate gene approaches.ResultsTo produce easy-to-maintain insertional mutations and to obtain fluorescent marker lines to aid phenotypic analysis, we undertook a large-scale transposon mutagenesis screen. In this screen, we produced more than 6,500 new piggyBac insertions. Of these, 421 proved to be recessive lethal, 75 were semi-lethal, and eight indicated recessive sterility, while 505 showed new enhancer-trap patterns. Insertion junctions were determined for 403 lines and often appeared to be located within transcription units. Insertion sites appeared to be randomly distributed throughout the genome, with the exception of a preference for reinsertion near the donor site.ConclusionA large collection of enhancer-trap and embryonic lethal beetle lines has been made available to the research community and will foster investigations into diverse fields of insect biology, pest control, and evolution. Because the genetic elements used in this screen are species-nonspecific, and because the crossing scheme does not depend on balancer chromosomes, the methods presented herein should be broadly applicable for many insect species.


Developmental Biology | 2008

Divergent functions of orthodenticle, empty spiracles and buttonhead in early head patterning of the beetle Tribolium castaneum (Coleoptera).

Johannes B. Schinko; Nina Kreuzer; Nils Offen; Nico Posnien; Ernst A. Wimmer; Gregor Bucher

The head gap genes orthodenticle (otd), empty spiracles (ems) and buttonhead (btd) are required for metamerization and segment specification in Drosophila. We asked whether the function of their orthologs is conserved in the red flour beetle Tribolium castaneum which in contrast to Drosophila develops its larval head in a way typical for insects. We find that depending on dsRNA injection time, two functions of Tc-orthodenticle1 (Tc-otd1) can be identified. The early regionalization function affects all segments formed during the blastoderm stage while the later head patterning function is similar to Drosophila. In contrast, both expression and function of Tc-empty spiracles (Tc-ems) are restricted to the posterior part of the ocular and the anterior part of the antennal segment and Tc-buttonhead (Tc-btd) is not required for head cuticle formation at all. We conclude that the gap gene like roles of ems and btd are not conserved while at least the head patterning function of otd appears to be similar in fly and beetle. Hence, the ancestral mode of insect head segmentation remains to be discovered. With this work, we establish Tribolium as a model system for arthropod head development that does not suffer from the Drosophila specific problems like head involution and strongly reduced head structures.


CSH Protocols | 2009

RNAi in the Red Flour Beetle (Tribolium)

Nico Posnien; Johannes B. Schinko; Daniela Grossmann; Teresa D. Shippy; Barbora Konopova; Gregor Bucher

INTRODUCTION Tribolium castaneum is exceptionally amenable to gene knockdown by RNA interference (RNAi) which, in this insect, is systemic (spreading throughout the organism and to the next generation), highly penetrant, and able to phenocopy genetic null phenotypes. Hence, any gene function can be knocked down at any stage in (apparently) all tissues upon injection of double-stranded RNA (dsRNA). The RNAi effect is elicited both in the injected animal and, if female pupae or adults have been injected, transferred to the offspring. Embryonic RNAi (eRNAi) usually generates the strongest phenotypes in the injected individual, but suffers from elevated lethality caused by injection injury. Pupal RNAi (pRNAi), in which female pupae are injected and phenotypes scored in the offspring, is the easiest to perform. However, in some cases, the knockdown of a gene leads to sterility of the injected female. This problem can be circumvented in many cases by injecting adult females (aRNAi) or using eRNAi. In order to interfere with processes during metamorphosis, injection into last-stage larvae is used (lRNAi). Up to two genes in a single experiment have been successfully knocked down via RNAi. The inclusion of more than two genes usually leads to a dilution effect, which lowers phenotypic strength. This protocol describes the production of dsRNA from a polymerase chain reaction (PCR) template, injection procedures for each Tribolium life stage, and important controls for effective analysis.


BMC Developmental Biology | 2010

Functionality of the GAL4/UAS system in Tribolium requires the use of endogenous core promoters

Johannes B. Schinko; Markus Weber; Ivana Viktorinová; Alexandros Kiupakis; Michalis Averof; Martin Klingler; Ernst A. Wimmer; Gregor Bucher

BackgroundThe red flour beetle Tribolium castaneum has developed into an insect model system second only to Drosophila. Moreover, as a coleopteran it represents the most species-rich metazoan taxon which also includes many pest species. The genetic toolbox for Tribolium research has expanded in the past years but spatio-temporally controlled misexpression of genes has not been possible so far.ResultsHere we report the establishment of the GAL4/UAS binary expression system in Tribolium castaneum. Both GAL4Δ and GAL4VP16 driven by the endogenous heat shock inducible promoter of the Tribolium hsp68 gene are efficient in activating reporter gene expression under the control of the Upstream Activating Sequence (UAS). UAS driven ubiquitous tGFP fluorescence was observed in embryos within four hours after activation while in-situ hybridization against tGFP revealed expression already after two hours. The response is quick in relation to the duration of embryonic development in Tribolium - 72 hours with segmentation being completed after 24 hours - which makes the study of early embryonic processes possible using this system. By comparing the efficiency of constructs based on Tribolium, Drosophila, and artificial core promoters, respectively, we find that the use of endogenous core promoters is essential for high-level expression of transgenic constructs.ConclusionsWith the established GAL4/UAS binary expression system, ectopic misexpression approaches are now feasible in Tribolium. Our results support the contention that high-level transgene expression usually requires endogenous regulatory sequences, including endogenous core promoters in Tribolium and probably also other model systems.


PLOS Genetics | 2011

Candidate gene screen in the red flour beetle Tribolium reveals six3 as ancient regulator of anterior median head and central complex development.

Nico Posnien; Nikolaus Koniszewski; Hendrikje Jeannette Hein; Gregor Bucher

Several highly conserved genes play a role in anterior neural plate patterning of vertebrates and in head and brain patterning of insects. However, head involution in Drosophila has impeded a systematic identification of genes required for insect head formation. Therefore, we use the red flour beetle Tribolium castaneum in order to comprehensively test the function of orthologs of vertebrate neural plate patterning genes for a function in insect head development. RNAi analysis reveals that most of these genes are indeed required for insect head capsule patterning, and we also identified several genes that had not been implicated in this process before. Furthermore, we show that Tc-six3/optix acts upstream of Tc-wingless, Tc-orthodenticle1, and Tc-eyeless to control anterior median development. Finally, we demonstrate that Tc-six3/optix is the first gene known to be required for the embryonic formation of the central complex, a midline-spanning brain part connected to the neuroendocrine pars intercerebralis. These functions are very likely conserved among bilaterians since vertebrate six3 is required for neuroendocrine and median brain development with certain mutations leading to holoprosencephaly.


Evolution & Development | 2009

The insect upper lip (labrum) is a nonsegmental appendage‐like structure

Nico Posnien; Fakrudin Bashasab; Gregor Bucher

SUMMARY The insect upper lip—the labrum—is a lobe‐like structure anterior to the mouth opening. Whether the labrum represents a fused pair of segmental appendages or evolved independently is heavily debated. Here, we identify additional similarities of the regulatory gene network active in labrum and trunk appendages. However, we do not find a labral parasegment boundary and we show that labral Tc‐Dll expression is independent of Tc‐wg and Tc‐hh signals. In contrast, Tc‐Dll expression in all trunk appendages does require these signals. Finally, we identify crucial differences between the location of the labrum and trunk appendages: the labrum develops in median rather than lateral tissues and is part of an anterior nonsegmental tissue marked by and dependent on Tc‐six3 activity. To reconcile these seeming contradictory results, we propose that the genetic network evolved in either labrum or trunk appendages and became redeployed at a novel location to form the other structure.

Collaboration


Dive into the Gregor Bucher's collaboration.

Top Co-Authors

Avatar

Nico Posnien

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tobias Richter

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Upalparna Majumdar

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge