Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregor James Macdonald is active.

Publication


Featured researches published by Gregor James Macdonald.


Bioorganic & Medicinal Chemistry Letters | 2010

Scaffold hopping from pyridones to imidazo[1,2-a]pyridines. New positive allosteric modulators of metabotropic glutamate 2 receptor.

Gary Tresadern; José M. Cid; Gregor James Macdonald; Juan Antonio Vega; Ana Isabel de Lucas; Aránzazu García; Encarnación Matesanz; María Lourdes Linares; Daniel Oehlrich; Hilde Lavreysen; Ilse Biesmans; Andrés A. Trabanco

Imidazo[1,2-a]pyridines were identified via their shape and electrostatic similarity as novel positive allosteric modulators of the metabotropic glutamate 2 receptor. The subsequent synthesis and SAR are described. Potent, selective and metabolically stable compounds were found representing a promising avenue for current further studies.


Journal of Medicinal Chemistry | 2012

Discovery of 3-cyclopropylmethyl-7-(4-phenylpiperidin-1-yl)-8-trifluoromethyl[1,2,4]triazolo[4,3-a]pyridine (JNJ-42153605): a positive allosteric modulator of the metabotropic glutamate 2 receptor.

José M. Cid; Gary Tresadern; Juan Antonio Vega; Ana Isabel de Lucas; Encarnación Matesanz; Laura Iturrino; María Lourdes Linares; Aránzazu García; José Ignacio Andrés; Gregor James Macdonald; Daniel Oehlrich; Hilde Lavreysen; Anton Megens; Abdellah Ahnaou; Wilhelmus Drinkenburg; Claire Mackie; Stefan Pype; David Gallacher; Andrés A. Trabanco

Advanced leads from a series of 1,2,4-triazolo[4,3-a]pyridines with mGlu2 receptor PAM activity are reported. By modification of the analogous imidazo[1,2-a]pyridine series, the newly reported leads have improved potency, in vitro ADMET, and hERG as well as good in vivo PK profile. The optimization of the series focused on improving metabolic stability while controlling lipophilicity by introducing small modifications to the scaffold substituents. Analysis of this series combined with our previously reported mGlu2 receptor PAMs showed how lipophilic ligand efficiency was improved during the course of the program. Among the best compounds, example 20 (JNJ-42153605) showed a central in vivo efficacy by inhibition of REM sleep state at a dose of 3 mg/kg po in the rat sleep-wake EEG paradigm, a phenomenon shown earlier to be mGlu2 mediated. In mice, compound 20 reversed PCP-induced hyperlocomotion with an ED₅₀ of 5.4 mg/kg sc, indicative of antipsychotic activity.


Tetrahedron Letters | 1998

ASYMMETRIC SYNTHESIS OF THE MC7N CORE OF THE MANUMYCIN FAMILY : PREPARATION OF (+)-MT 35214 AND A FORMAL TOTAL SYNTHESIS OF (-)-ALISAMYCIN

Gregor James Macdonald; Lilian Alcaraz; Norman J. Lewis; Richard Taylor

An asymmetric approach to the mC7N epoxyquinone central unit of the manumycin antibiotics is described based on the enantioselective (89% ee) chiral phase transfer epoxidation of a substituted cyclohexenone. The chiral epoxide is employed in the first syntheses of the title compounds in enantiomerically pure form.


Journal of Medicinal Chemistry | 2012

Imidazo[1,2-a]pyridines: Orally Active Positive Allosteric Modulators of the Metabotropic Glutamate 2 Receptor

Andrés A. Trabanco; Gary Tresadern; Gregor James Macdonald; Juan Antonio Vega; Ana Isabel de Lucas; Encarnación Matesanz; Aránzazu García; María Lourdes Linares; Sergio A. Alonso de Diego; José Manuel Alonso; Daniel Oehlrich; Abdelah Ahnaou; Wilhelmus Drinkenburg; Claire Mackie; José Ignacio Andrés; Hilde Lavreysen; José M. Cid

Advanced leads of an imidazopyridine series of positive allosteric modulators of the metabotropic glutamate 2 (mGlu2) receptor are reported. The optimization of in vitro ADMET and in vivo pharmacokinetic properties led to the identification of 27o. With good potency and selectivity for the mGlu2 receptor, 27o affected sleep-wake architecture in rats after oral treatment, which we have previously shown to be indicative of mGlu2 receptor-mediated central activity.


Journal of Medicinal Chemistry | 2012

Design and Synthesis of a Novel Series of Bicyclic Heterocycles As Potent γ-Secretase Modulators

Francois Paul Bischoff; Didier Jean-Claude Berthelot; Michel Anna Jozef De Cleyn; Gregor James Macdonald; Garrett Berlond Minne; Daniel Oehlrich; Serge Maria Aloysius Pieters; Michel Surkyn; Andrés A. Trabanco; Gary Tresadern; Sven Franciscus Anna Van Brandt; Ingrid Velter; Mirko Zaja; Herman Borghys; Chantal Masungi; Marc Mercken

The design and the synthesis of several chemical subclasses of imidazole containing γ-secretase modulators (GSMs) is described. Conformational restriction of pyridone 4 into bicyclic pyridone isosteres has led to compounds with high in vitro and in vivo potency. This has resulted in the identification of benzimidazole 44a as a GSM with low nanomolar potency in vitro. In mouse, rat, and dog, this compound displayed the typical γ-secretase modulatory profile by lowering Aβ42 and Aβ40 levels combined with an especially pronounced increase in Aβ38 and Aβ37 levels while leaving the total levels of amyloid peptides unchanged.


Bioorganic & Medicinal Chemistry Letters | 2011

Rational design and synthesis of aminopiperazinones as β-secretase (BACE) inhibitors.

Gary Tresadern; Francisca Delgado; Oscar Delgado; Gregor James Macdonald; Dieder Moechars; Frederik Rombouts; Richard Alexander; John Spurlino; Michiel Luc Maria Van Gool; Juan Antonio Vega; Andrés A. Trabanco

Aminopiperazinone inhibitors of BACE were identified by rational design. Structure based design guided idea prioritization and initial racemic hit 18a showed good activity. Modification in decoration and chiral separation resulted in the 40 nM inhibitor, (-)-37, which showed in vivo reduction of amyloid beta peptides. The crystal structure of 18a showed a binding mode driven by interaction with the catalytic aspartate dyad and distribution of the biaryl amide decoration towards S1 and S3 pockets.


Journal of Pharmacology and Experimental Therapeutics | 2013

Pharmacological Characterization of JNJ-40068782, a New Potent, Selective, and Systemically Active Positive Allosteric Modulator of the mGlu2 Receptor and Its Radioligand [3H]JNJ-40068782

Hilde Lavreysen; Xavier Langlois; A. Ahnaou; Wilhelmus Drinkenburg; P. te Riele; I. Biesmans; I. Van der Linden; Luc Peeters; Anton A. H. P. Megens; Cindy Wintmolders; J. M. Cid; A. A. Trabanco; J. I. Andres; F. M. Dautzenberg; R. Lutjens; Gregor James Macdonald; John R. Atack

Modulation of the metabotropic glutamate type 2 (mGlu2) receptor is considered a promising target for the treatment of central nervous system diseases such as schizophrenia. Here, we describe the pharmacological properties of the novel mGlu2 receptor positive allosteric modulator (PAM) 3-cyano-1-cyclopropylmethyl-4-(4-phenyl-piperidin-1-yl)-pyridine-2(1H)-one (JNJ-40068782) and its radioligand [3H]JNJ-40068782. In guanosine 5′-O-(3-[35S]thio)triphosphate binding, JNJ-40068782 produced a leftward and upward shift in the glutamate concentration-effect curve at human recombinant mGlu2 receptors. The EC50 of JNJ-40068782 for potentiation of an EC20-equivalent concentration of glutamate was 143 nM. Although JNJ-40068782 did not affect binding of the orthosteric antagonist [3H]2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic acid (LY-341495), it did potentiate the binding of the agonist [3H](2S,2′R,3′R)-2-(2′,3′-dicarboxylcyclopropyl)glycine (DCG-IV), demonstrating that it can allosterically affect binding at the agonist recognition site. The binding of [3H]JNJ-40068782 to human recombinant mGlu2 receptors in Chinese hamster ovary cells and rat brain receptors was saturable with a KD of ∼10 nM. In rat brain, the anatomic distribution of [3H]JNJ-40068782 was consistent with mGlu2 expression previously described and was most abundant in cortex and hippocampus. The ability of structurally unrelated PAMs to displace [3H]JNJ-40068782 suggests that PAMs may bind to common determinants within the same site. It is noteworthy that agonists also increased the binding affinity of [3H]JNJ-40068782. JNJ-40068782 influenced rat sleep-wake organization by decreasing rapid eye movement sleep with a lowest active dose of 3 mg/kg PO. In mice, JNJ-40068782 reversed phencyclidine-induced hyperlocomotion with an ED50 of 5.7 mg/kg s.c. Collectively, the present data demonstrate that JNJ-40068782 has utility in investigating the potential of mGlu2 modulation for the treatment of diseases characterized by disturbed glutamatergic signaling and highlight the value of [3H]JNJ-40068782 in exploring allosteric binding.


Journal of Pharmacology and Experimental Therapeutics | 2012

Pharmacology of JNJ-37822681, a Specific and Fast-Dissociating D2 Antagonist for the Treatment of Schizophrenia.

Xavier Langlois; Anton A. H. P. Megens; Hilde Lavreysen; John R. Atack; M. Cik; P. te Riele; Luc Peeters; R. Wouters; Jef Vermeire; Herman M. R. Hendrickx; Gregor James Macdonald; M. de Bruyn

All marketed antipsychotics act by blocking dopamine D2 receptors. Fast dissociation from D2 receptors may be one of the elements contributing to the lower incidence of extrapyramidal symptoms (EPS) exhibited by newer antipsychotics. Therefore, we screened for specific D2 receptor blockers with a fast rate of dissociation. Radioligand binding experiments identified N- [1-(3,4-difluorobenzyl)piperidin-4-yl]-6-(trifluoromethyl)pyridazin-3-amine (JNJ-37822681) as a fast-dissociating D2 ligand. Its D2 receptor specificity was high compared with atypical antipsychotics, with little activity at receptors associated with unwanted effects [α1, α2, H1, muscarinic, and 5-hydroxytryptamine (5-HT) type 2C] and for receptors that may interfere with the effects of D2 antagonism (D1, D3, and 5-HT2A). JNJ-37822681 occupied D2 receptors in rat brain at relatively low doses (ED50 0.39 mg/kg) and was effective in animal models of psychosis (e.g., inhibition of apomorphine-induced stereotypy or d-amphetamine/phencyclidine-induced hyperlocomotion). Prolactin levels increased from an ED50 (0.17 mg/kg, peripheral D2 receptors) close to the ED50 required for apomorphine antagonism (0.19 mg/kg, central D2 receptors), suggesting excellent brain disposition and minimal prolactin release at therapeutic doses. JNJ-37822681 induced catalepsy and inhibited avoidance behavior, but with a specificity margin relative to apomorphine antagonism that was larger than that obtained for haloperidol and similar to that obtained for olanzapine. This larger specificity margin (compared with haloperidol) may reflect lower EPS liability and less behavioral suppression after JNJ-37822681. JNJ-37822681 is a novel, potent, specific, centrally active, fast-dissociating D2 antagonist with optimal brain disposition, and it is the first compound that allows the evaluation of the potential value of fast D2 antagonism for the treatment of schizophrenia and bipolar disorder.


Bioorganic & Medicinal Chemistry | 2011

Molecular properties affecting fast dissociation from the D2 receptor.

Gary Tresadern; Jose Manuel Bartolome; Gregor James Macdonald; Xavier Langlois

Dopamine D(2) receptor antagonism is the foundation of antipsychotic treatment. Antipsychotic agents vary in how fast they dissociate from the D(2) receptors. It has been proposed that the liability to exhibit side effects such as extra pyramidal symptoms may be the result of a slow rate of dissociation. Compounds with a faster rate of dissociation, while still blocking efficiently the D(2) receptors, will subsequently respond better to physiological surges in dopamine transmission. Therefore, work in our laboratories has focussed on identifying fast dissociating and selective D(2) antagonists. Biological screening was performed to measure the affinity and extent of dissociation for a large dataset of over 1800 D(2) antagonists. Subsequent univariate and multivariate statistical analysis revealed the molecular properties which differentiate fast and slow dissociating compounds. It is shown that faster dissociating antagonists are less lipophilic and have lower molecular weight. There was a clear and expected inverse relationship with extent of dissociation and binding affinity with more potent compounds tending to be slower dissociating. However, within a range of comparable affinity both fast and slow dissociating compounds were identified. After de-correlating affinity and dissociation the analysis revealed the important descriptors.


ACS Chemical Neuroscience | 2010

Discovery of 1,5-disubstituted pyridones: a new class of positive allosteric modulators of the metabotropic glutamate 2 receptor.

José M. Cid; Guillaume Albert Jacques Duvey; Philippe Cluzeau; Vanthea Nhem; Karim Macary; Alexandre Raux; Nicolas Poirier; Jessica Muller; Christelle Bolea; Terry Patrick Finn; Sonia Poli; Mark Epping-Jordan; Emilie Chamelot; Francis Derouet; Françoise Girard; Gregor James Macdonald; Juan Antonio Vega; Ana Isabel de Lucas; Encarnación Matesanz; Hilde Lavreysen; María Lourdes Linares; Daniel Oehlrich; Julen Oyarzabal; Gary Tresadern; Andrés A. Trabanco; José Ignacio Andrés; Emmanuel Le Poul; Hassan Julien Imogai; Robert Johannes Lütjens; Jean-Philippe Rocher

A series of 1,5-disubstituted pyridones was identified as positive allosteric modulators (PAMs) of the metabotropic glutamate receptor 2 (mGluR2) via high throughput screening (HTS). Subsequent SAR exploration led to the identification of several compounds with improved in vitro activity. Lead compound 8 was further profiled and found to attenuate the increase in PCP induced locomotor activity in mice.

Collaboration


Dive into the Gregor James Macdonald's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge