Gregor Kreth
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregor Kreth.
PLOS Biology | 2005
Andreas Bolzer; Gregor Kreth; Irina Solovei; Daniela Koehler; Kaan Saracoglu; Christine Fauth; Stefan Müller; Roland Eils; Christoph Cremer; Michael R. Speicher; Thomas Cremer
Studies of higher-order chromatin arrangements are an essential part of ongoing attempts to explore changes in epigenome structure and their functional implications during development and cell differentiation. However, the extent and cell-type-specificity of three-dimensional (3D) chromosome arrangements has remained controversial. In order to overcome technical limitations of previous studies, we have developed tools that allow the quantitative 3D positional mapping of all chromosomes simultaneously. We present unequivocal evidence for a probabilistic 3D order of prometaphase chromosomes, as well as of chromosome territories (CTs) in nuclei of quiescent (G0) and cycling (early S-phase) human diploid fibroblasts (46, XY). Radial distance measurements showed a probabilistic, highly nonrandom correlation with chromosome size: small chromosomes—independently of their gene density—were distributed significantly closer to the center of the nucleus or prometaphase rosette, while large chromosomes were located closer to the nuclear or rosette rim. This arrangement was independently confirmed in both human fibroblast and amniotic fluid cell nuclei. Notably, these cell types exhibit flat-ellipsoidal cell nuclei, in contrast to the spherical nuclei of lymphocytes and several other human cell types, for which we and others previously demonstrated gene-density-correlated radial 3D CT arrangements. Modeling of 3D CT arrangements suggests that cell-type-specific differences in radial CT arrangements are not solely due to geometrical constraints that result from nuclear shape differences. We also found gene-density-correlated arrangements of higher-order chromatin shared by all human cell types studied so far. Chromatin domains, which are gene-poor, form a layer beneath the nuclear envelope, while gene-dense chromatin is enriched in the nuclear interior. We discuss the possible functional implications of this finding.
Chromosome Research | 2001
Marion Cremer; Johann von Hase; Tanja Volm; Alessandro Brero; Gregor Kreth; Joachim Walter; Christine Fischer; Irina Solovei; Christoph Cremer; Thomas Cremer
A quantitative comparison of higher-order chromatin arrangements was performed in human cell types with three-dimensionally (3D) preserved, differently shaped nuclei. These cell types included flat-ellipsoid nuclei of diploid amniotic fluid cells and fibroblasts and spherical nuclei of B and T lymphocytes from peripheral human blood. Fluorescence in-situ hybridization (FISH) was performed with chromosome paint probes for large (#1–5) and small (#17–20) autosomes, and for the two sex chromosomes. Other probes delineated heterochromatin blocks of numerous larger and smaller human chromosomes. Shape differences correlated with distinct differences in higher order chromatin arrangements: in the spherically shaped lymphocyte nuclei we noted the preferential positioning of the small, gene dense #17, 19 and 20 chromosome territories (CTs) in the 3D nuclear interior – typically without any apparent connection to the nuclear envelope. In contrast, CTs of the gene-poor small chromosomes #18 and Y were apparently attached at the nuclear envelope. CTs of large chromosomes were also preferentially located towards the nuclear periphery. In the ellipsoid nuclei of amniotic fluid cells and fibroblasts, all tested CTs showed attachments to the upper and/or lower part of the nuclear envelope: CTs of small chromosomes, including #18 and Y, were located towards the centre of the nuclear projection (CNP), while the large chromosomes were positioned towards the 2D nuclear rim. In contrast to these highly reproducible radial arrangements, 2D distances measured between heterochromatin blocks of homologous and heterologous CTs were strikingly variable. These results as well as CT painting let us conclude that nuclear functions in the studied cell types may not require reproducible side-by-side arrangements of specific homologous or non-homologous CTs. 3D-modelling of statistical arrangements of 46 human CTs in spherical nuclei was performed under the assumption of a linear correlation between DNA content of each chromosome and its CT volume. In a set of modelled nuclei, we noted the preferential localization of smaller CTs towards the 3D periphery and of larger CTs towards the 3D centre. This distribution is in clear contrast to the experimentally observed distribution in lymphocyte nuclei. We conclude that presently unknown factors (other than topological constraints) may play a decisive role to enforce the different radial arrangements of large and small CTs observed in ellipsoid and spherical human cell nuclei.
Chromosome Research | 2001
Felix A. Habermann; Marion Cremer; Joachim Walter; Gregor Kreth; Johann von Hase; Karin Bauer; Johannes Wienberg; Christoph Cremer; Thomas Cremer; Irina Solovei
Arrangements of chromosome territories in nuclei of chicken fibroblasts and neurons were analysed employing multicolour chromosome painting, laser confocal scanning microscopy and three-dimensional (3D) reconstruction. The chicken karyotype consists of 9 pairs of macrochromosomes and 30 pairs of microchromosomes. Although the latter represent only 23% of the chicken genome they contain almost 50% of its genes. We show that territories of microchromosomes in fibroblasts and neurons were clustered within the centre of the nucleus, while territories of the macrochromosomes were preferentially located towards the nuclear periphery. In contrast to these highly consistent radial arrangements, the relative arrangements of macrochromosome territories with respect to each other (side-by-side arrangements) were variable. A stringent radial arrangement of macro- and microchromosomes was found in mitotic cells. Replication labelling studies revealed a pattern of DNA replication similar to mammalian cell nuclei: gene dense, early replicating chromatin mostly represented by microchromosomes, was located within the nuclear interior, surrounded by a rim of late replicating chromatin. These results support the evolutionary conservation of several features of higher-order chromatin organization between mammals and birds despite the differences in their karyotypes.
Chromosoma | 2004
Ales Pecinka; Veit Schubert; Armin Meister; Gregor Kreth; Marco Klatte; Martin A. Lysak; Jörg Fuchs; Ingo Schubert
Differential painting of all five chromosome pairs of Arabidopsis thaliana revealed for the first time the interphase chromosome arrangement in a euploid plant. Side-by-side arrangement of heterologous chromosome territories and homologous association of chromosomes 1, 3 and 5 (on average in 35–50% of nuclei) are in accordance with the random frequency predicted by computer simulations. Only the nucleolus organizing region (NOR)-bearing chromosome 2 and 4 homologs associate more often than randomly, since NORs mostly attach to a single nucleolus. Somatic pairing of homologous ∼100 kb segments occurs less frequently than homolog association, not significantly more often than expected at random and not simultaneously along the homologs. Thus, chromosome arrangement in Arabidopsis differs from that in Drosophila (characterized by somatic pairing of homologs), in spite of similar genome size, sequence organization and chromosome number. Nevertheless, in up to 31.5% of investigated Arabidopsis nuclei allelic sequences may share positions close enough for homologous recombination.
Journal of Cell Biology | 2006
Lindsay S. Shopland; Christopher R. Lynch; Kevin A. Peterson; Kathleen Thornton; Nick Kepper; Johann von Hase; Stefan Stein; Sarah Vincent; Kelly R. Molloy; Gregor Kreth; Christoph Cremer; Timothy P. O'Brien
Specific mammalian genes functionally and dynamically associate together within the nucleus. Yet, how an array of many genes along the chromosome sequence can be spatially organized and folded together is unknown. We investigated the 3D structure of a well-annotated, highly conserved 4.3-Mb region on mouse chromosome 14 that contains four clusters of genes separated by gene “deserts.” In nuclei, this region forms multiple, nonrandom “higher order” structures. These structures are based on the gene distribution pattern in primary sequence and are marked by preferential associations among multiple gene clusters. Associating gene clusters represent expressed chromatin, but their aggregation is not simply dependent on ongoing transcription. In chromosomes with aggregated gene clusters, gene deserts preferentially align with the nuclear periphery, providing evidence for chromosomal region architecture by specific associations with functional nuclear domains. Together, these data suggest dynamic, probabilistic 3D folding states for a contiguous megabase-scale chromosomal region, supporting the diverse activities of multiple genes and their conserved primary sequence organization.
Biophysical Journal | 2004
Gregor Kreth; J. Finsterle; J. von Hase; M. Cremer; Christoph Cremer
Numerous investigations in the last years focused on chromosome arrangements in interphase nuclei. Recent experiments concerning the radial positioning of chromosomes in the nuclear volume of human and primate lymphocyte cells suggest a relationship between the gene density of a chromosome territory (CT) and its distance to the nuclear center. To relate chromosome positioning and gene density in a quantitative way, computer simulations of whole human cell nuclear genomes of normal karyotype were performed on the basis of the spherical 1 Mbp chromatin domain model and the latest data about sequence length and gene density of chromosomes. Three different basic assumptions about the initial distribution of chromosomes were used: a statistical, a deterministic, and a probabilistic initial distribution. After a simulated decondensation in early G1, a comparison of the radial distributions of simulated and experimentally obtained data for CTs Nos. 12, 18, 19, and 20 was made. It was shown that the experimentally observed distributions can be fitted better assuming an initial probabilistic distribution. This supports the concept of a probabilistic global gene positioning code depending on CT sequence length and gene density.
Radiation and Environmental Biophysics | 2008
Werner Friedland; Herwig G. Paretzke; F. Ballarini; A. Ottolenghi; Gregor Kreth; Christoph Cremer
For the understanding of radiation action on biological systems like cellular macromolecules (e.g., DNA in its higher structures) a synergistic approach of experiments and quantitative modelling of working hypotheses is necessary. Further on, the influence on calculated results of certain assumptions in such working hypotheses must critically be evaluated. In the present work, this issue is highlighted in two aspects for the case of DNA damage in single cells. First, yields of double-strand breaks and frequency distributions of DNA fragment lengths after ion irradiation were calculated using different assumptions on the DNA target model. Compared to a former target model now a moderate effect due to the inclusion of a spherical chromatin domain model has been found. Second, the influence of assumptions on particular geometric chromosome models on calculated chromosome aberration data is illustrated with two target-modelling approaches for this end point.
Molecular and Cellular Biology | 2004
Waltraud G. Müller; Dietmar Rieder; Gregor Kreth; Christoph Cremer; Zlatko Trajanoski; James G. McNally
ABSTRACT Knowledge of tertiary chromatin structure in mammalian interphase chromosomes is largely derived from artificial tandem arrays. In these model systems, light microscope images reveal fibers or beaded fibers after high-density targeting of transactivators to insertional domains spanning several megabases. These images of fibers have lent support to chromonema fiber models of tertiary structure. To assess the relevance of these studies to natural mammalian chromatin, we identified two different ∼400-kb regions on human chromosomes 6 and 22 and then examined light microscope images of interphase tertiary chromatin structure when the regions were transcriptionally active and inactive. When transcriptionally active, these natural chromosomal regions elongated, yielding images characterized by a series of adjacent puncta or “beads”, referred to hereafter as beaded images. These elongated structures required transcription for their maintenance. Thus, despite marked differences in the density and the mode of transactivation, the natural and artificial systems showed similarities, suggesting that beaded images are generic features of transcriptionally active tertiary chromatin. We show here, however, that these images do not necessarily favor chromonema fiber models but can also be explained by a radial-loop model or even a simple nucleosome affinity, random-chain model. Thus, light microscope images of tertiary structure cannot distinguish among competing models, although they do impose key constraints: chromatin must be clustered to yield beaded images and then packaged within each cluster to enable decondensation into adjacent clusters.
Mutation Research | 1998
Gregor Kreth; Ch. Münkel; Jörg Langowski; Thomas Cremer; Christoph Cremer
Various models for the nuclear architecture in interphase cell nuclei have been presented, proposing a territorial or a non-territorial organization of chromosomes. To better understand the correlation between nuclear architecture and the formation of chromosomal aberrations, we applied computer simulations to model the extent of radiation induced chromosome damage under certain geometrical constraints. For this purpose, chromosomes were described by different models, which approximate the chromatin fiber by a polymer chain, folded in different ways. Corresponding to the different condensation levels, a territorial or a non-territorial organization of chromosomes was obtained. To determine the relative frequencies of radiation induced damage, the effects of isotropic ionizing radiation and of a focused laser UV-beam were studied. For isotropic ionizing radiation, the calculated translocation frequencies showed no differences between territorial and non-territorial models except for one special case. For localized irradiation, the results of both organizations were clearly different, with respect to the total number of damaged chromosomes per cell. The predictions agreed well with the experimental data available.
Radiation Research | 2007
Gregor Kreth; S. K. Pazhanisamy; Michael Hausmann; Christoph Cremer
Abstract Kreth, G., Pazhanisamy, S. K., Hausmann, M. and Cremer, C., Cell Type-Specific Quantitative Predictions of Radiation-Induced Chromosome Aberrations: A Computer ModelApproach. Radiat. Res. 167, 515–525 (2007). A quantitative computer model was applied to simulate the three-dimensional (3D) spatial organization of chromatin in human cell nuclei under defined conditions of virtual irradiation to explore the implications of spatial organization on chromosome aberrations. To calibrate the virtual irradiation algorithm, a dose-dependent spectrum of radiation-induced chromosome aberrations such as dicentrics, translocations and centric rings was calculated for low-LET radiation doses ranging from 0.5 to 5 Gy. This was compared with the results from experimental studies. While the dose–response curves calculated from model simulations agree well with experimental dose–response curves for dicentrics and translocations, centric rings are significantly more frequent in the model simulation than in experiments despite taking into account exclusive arm territories in the applied Spherical 1 Mbp Chromatin Domain (SCD) computer model explicitly. Taking into account the non-random positioning of chromosome territories observed in lymphocyte cell nuclei (a so-called gene density-correlated arrangement of chromosome territories), aberration frequencies were calculated with the calibrated irradiation algorithm to investigate the impact of chromosome territory neighborhood effects (proximity effects). The absolute frequencies of pairwise exchanges agree well with those found in an experimental study. In conclusion, the results obtained using the computer model approach presented here based on only a few adjustable parameters correlated well with those of experimental studies of chromosome aberration frequencies. Thus the model may be a useful tool in radiation-induced cancer risk estimates in combination with epidemiological studies.