Gregor Thalhammer
Innsbruck Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregor Thalhammer.
Nature Methods | 2015
Gerrit Sitters; Douwe Kamsma; Gregor Thalhammer; Monika Ritsch-Marte; Erwin J.G. Peterman; Gijs J. L. Wuite
Force spectroscopy has become an indispensable tool to unravel the structural and mechanochemical properties of biomolecules. Here we extend the force spectroscopy toolbox with an acoustic manipulation device that can exert forces from subpiconewtons to hundreds of piconewtons on thousands of biomolecules in parallel, with submillisecond response time and inherent stability. This method can be readily integrated in lab-on-a-chip devices, allowing for cost-effective and massively parallel applications.
Journal of Optics | 2011
Gregor Thalhammer; Ruth Steiger; Stefan Bernet; Monika Ritsch-Marte
Optical micromanipulation stands for contact-free handling of microscopic particles by light. Optical forces can manipulate non-absorbing objects in a large range of sizes, e.g., from biological cells down to cold atoms. Recently much progress has been made going from the micro-xa0down to the nanoscale. Less attention has been paid to going the other way, trapping increasingly large particles. Optical tweezers typically employ a single laser beam tightly focused by a microscope objective of high numerical aperture to stably trap a particle in three dimensions (3D). As the particle size increases, stable 3D trapping in a single-beam trap requires scaling up the optical power, which eventually induces adverse biological effects. Moreover, the restricted field of view of standard optical tweezers, dictated by the use of high NA objectives, is particularly unfavorable for catching actively moving specimens. Both problems can be overcome by traps with counter-propagating beams. Our macro-tweezers are especially designed to trap highly motile organisms, as they enable three-dimensional all-optical trapping and guiding in a volume of 2 × 1 × 2xa0mm3. Here we report for the first time the optical trapping of large actively swimming organisms, such as for instance Euglena protists and dinoflagellates of up to 70xa0µm length. Adverse bio-effects are kept low since trapping occurs outside high intensity regions, e.g., focal spots. We expect our approach to open various possibilities in the contact-free handling of 50–100xa0µm sized objects that could hitherto not be envisaged, for instance all-optical holding of individual micro-organisms for taxonomic identification, selective collecting or tagging.
Optics Express | 2013
Gregor Thalhammer; Richard Bowman; Gordon D. Love; Miles J. Padgett; Monika Ritsch-Marte
Nematic liquid crystal spatial light modulators (SLMs) with fast switching times and high diffraction efficiency are important to various applications ranging from optical beam steering and adaptive optics to optical tweezers. Here we demonstrate the great benefits that can be derived in terms of speed enhancement without loss of diffraction efficiency from two mutually compatible approaches. The first technique involves the idea of overdrive, that is the calculation of intermediate patterns to speed up the transition to the target phase pattern. The second concerns optimization of the target pattern to reduce the required phase change applied to each pixel, which in addition leads to a substantial reduction of variations in the intensity of the diffracted light during the transition. When these methods are applied together, we observe transition times for the diffracted light fields of about 1 ms, which represents up to a tenfold improvement over current approaches. We experimentally demonstrate the improvements of the approach for applications such as holographic image projection, beam steering and switching, and real-time control loops.
Optics Express | 2009
Maximilian Pitzek; Ruth Steiger; Gregor Thalhammer; Stefan Bernet; Monika Ritsch-Marte
Holographic optical tweezers typically require microscope objectives with high numerical aperture and thus usually suffer from the disadvantage of a small field of view and a small working distance. We experimentally investigate an optical mirror trap that is created after reflection of two holographically shaped collinear beams on a mirror. This approach combines a large field of view and a large working distance with the possibility to manipulate particles in a large size range, since it allows to use a microscope objective with a numerical aperture as low as 0.2. In this work we demonstrate robust optical three-dimensional trapping in a range of 1mm x 1mm x 2mm with particle sizes ranging from 1.4 mum up to 45 mum. The use of spatial light modulator based holographic methods to create the trapping beams allows to simultaneously trap many beads in complex, dynamic configurations. We present measurements that characterize the mirror traps in terms of trap stiffness, maximum trapping force and capture range.
Biomedical Optics Express | 2011
Gregor Thalhammer; Ruth Steiger; M. Meinschad; Martyn Hill; Stefan Bernet; Monika Ritsch-Marte
Combining several methods for contact free micro-manipulation of small particles such as cells or micro-organisms provides the advantages of each method in a single setup. Optical tweezers, which employ focused laser beams, offer very precise and selective handling of single particles. On the other hand, acoustic trapping with wavelengths of about 1 mm allows the simultaneous trapping of many, comparatively large particles. With conventional approaches it is difficult to fully employ the strengths of each method due to the different experimental requirements. Here we present the combined optical and acoustic trapping of motile micro-organisms in a microfluidic environment, utilizing optical macro-tweezers, which offer a large field of view and working distance of several millimeters and therefore match the typical range of acoustic trapping. We characterize the acoustic trapping forces with the help of optically trapped particles and present several applications of the combined optical and acoustic trapping, such as manipulation of large (75 μm) particles and active particle sorting.
Optics Express | 2011
Richard Bowman; Alexander Jesacher; Gregor Thalhammer; Graham M. Gibson; Monika Ritsch-Marte; Miles J. Padgett
Optical traps consisting of two counterpropagating, divergent beams of light allow relatively high forces to be exerted along the optical axis by turning off one beam, however the axial stiffness of the trap is generally low due to the lower numerical apertures typically used. Using a high speed spatial light modulator and CMOS camera, we demonstrate 3D servocontrol of a trapped particle, increasing the stiffness from 0.004 to 1.5 μN m(-1). This is achieved in the macro-tweezers geometry [Thalhammer, J. Opt. 13, 044024 (2011); Pitzek, Opt. Express 17, 19414 (2009)], which has a much larger field of view and working distance than single-beam tweezers due to its lower numerical aperture requirements. Using a 10×, 0.2 NA objective, active feedback produces a trap with similar effective stiffness to a conventional single-beam gradient trap, of order 1 μN m(-1) in 3D. Our control loop has a round-trip latency of 10 ms, leading to a resonance at 20 Hz. This is sufficient bandwidth to reduce the position fluctuations of a 10 μm bead due to Brownian motion by two orders of magnitude. This approach can be trivially extended to multiple particles, and we show three simultaneously position-clamped beads.
Optics Express | 2015
Gregor Thalhammer; Lisa Obmascher; Monika Ritsch-Marte
Direct measurement of optical forces based on recording the change of momentum between the in- and outgoing light does not have specific requirements on particle size or shape, or on beam shape. Thus this approach overcomes many of the limitations of force measurements based on position measurements, which require frequent calibration. In this work we validate the achievable accuracy for direct force measurements in the axial direction for a single beam optical tweezers setup, based on numerical simulations and experimental investigations of situations, where the true force is known. We find that for typical experimental situations a good accuracy with an error of less than 1 % of the maximum force can be achieved, independent of particle size or refractive index, provided that the total amount of light scattered in the backward direction is also taken into account, which is easy to accomplish experimentally. Due to the inherent particle shape independence of the direct force measurement method, these findings support that it provides accurate results for 3D force measurements for particles of arbitrary shape.
Optics Letters | 2015
Walter Harm; Alexander Jesacher; Gregor Thalhammer; Stefan Bernet; Monika Ritsch-Marte
We demonstrate that a parallel aligned liquid crystal on silicon (PA-LCOS) spatial light modulator (SLM) without any attached color mask can be used as a full color display with white light illumination. The method is based on the wavelength dependence of the (voltage controlled) birefringence of the liquid crystal pixels. Modern SLMs offer a wide range over which the birefringence can be modulated, leading (in combination with a linear polarizer) to several intensity modulation periods of a reflected light wave as a function of the applied voltage. Because of dispersion, the oscillation period strongly depends on the wavelength. Thus each voltage applied to an SLM pixel corresponds to another reflected color spectrum. For SLMs with a sufficiently broad tuning range, one obtains a color palette (i.e., a color lookup-table), which allows one to display color images. An advantage over standard liquid crystal displays (LCDs), which use color masks in front of the individual pixels, is that the light efficiency and the display resolution are increased by a factor of three.
Optics Letters | 2011
Alexander Jesacher; Clemens Roider; Saranjam Khan; Gregor Thalhammer; Stefan Bernet; Monika Ritsch-Marte
We introduce a widefield CARS microscope implementation that uses a spatial light modulator to obtain extremely precise control over the pump/probe-beam incidence geometry, which provides the possibility to enhance the image contrast at specific target resonances by fine-tuning the incidence angles. We show how this technique can be used to optimize the image contrast between objects of different size and to practically eliminate the undesired signal from the solvent that embeds small target specimens. Changing the numerical aperture of the illumination from 1.27 to 1.24 improved the ratio of the signals of 500 nm polystyrene beads and the agarose solvent by about 20 dB.
Optics in the Life Sciences (2011), paper OTTuB5 | 2011
Gregor Thalhammer
We present the combination of optical and acoustic trapping in a microfluidic device. This setup combines the advantages of a large trapping volume of acoustic trapping with the high precision and flexibility of optical micro-manipulation.