Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregor Tomasevic is active.

Publication


Featured researches published by Gregor Tomasevic.


Nature Medicine | 2003

Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma.

Gustav Mattiasson; Mehrdad Shamloo; Gunilla Gidö; Kavitha Mathi; Gregor Tomasevic; Saili Yi; Craig H. Warden; Roger F. Castilho; Thorsten Melcher; Mirella Gonzalez-Zulueta; Karoly Nikolich; Tadeusz Wieloch

Whereas uncoupling protein 1 (UCP-1) is clearly involved in thermogenesis, the role of UCP-2 is less clear. Using hybridization, cloning techniques and cDNA array analysis to identify inducible neuroprotective genes, we found that neuronal survival correlates with increased expression of Ucp2. In mice overexpressing human UCP-2, brain damage was diminished after experimental stroke and traumatic brain injury, and neurological recovery was enhanced. In cultured cortical neurons, UCP-2 reduced cell death and inhibited caspase-3 activation induced by oxygen and glucose deprivation. Mild mitochondrial uncoupling by 2,4-dinitrophenol (DNP) reduced neuronal death, and UCP-2 activity was enhanced by palmitic acid in isolated mitochondria. Also in isolated mitochondria, UCP-2 shifted the release of reactive oxygen species from the mitochondrial matrix to the extramitochondrial space. We propose that UCP-2 is an inducible protein that is neuroprotective by activating cellular redox signaling or by inducing mild mitochondrial uncoupling that prevents the release of apoptogenic proteins.


Molecular Brain Research | 1999

Activation of p53 and its target genes p21WAF1/Cip1 and PAG608/Wig-1 in ischemic preconditioning

Gregor Tomasevic; Mehrdad Shamloo; David Israeli; Tadeusz Wieloch

A brief, 3 min period of global forebrain ischemia in the rat, induced by bilateral common carotid occlusion combined with hypotension, confers resistance to hippocampal pyramidal neurons against a subsequent 10 min ischemia, which is normally lethal to these cells. The molecular mechanisms underlying this ischemic preconditioning, or tolerance, are poorly understood. The tumor suppressor p53 is a transcription factor implicated in neuronal death following various insults, including cerebral ischemia. p53 is activated in response to cellular stress, e.g. hypoxia and DNA damage. Using in situ hybridization, we investigated the hippocampal mRNA expression of p53, and two of its target genes, p21(WAF1/Cip1) and the recently cloned PAG608/Wig-1, in a two-vessel occlusion model of ischemic preconditioning. We also evaluated changes in the protein levels of p53 and PAG608/Wig-1 using immunohistochemistry. The mRNA levels of all three genes increased in the ischemia sensitive CA1 region both following 3 min (non-lethal) preconditioning and 10 min of (lethal) nonconditioned ischemia. In contrast, after 10 min of ischemia preconditioned by a 3 min ischemic insult 48 h earlier, no upregulation of these genes was detected in the CA1. Following 10 min of nonconditioned ischemia, increased neuronal immunostaining of p53 and PAG608/Wig-1 was observed in the hippocampus, which was less pronounced following 3 min of preconditioning ischemia and 10 min of preconditioned ischemia. Our results demonstrate that activation of p53 and its response genes p21(WAF1/Cip1) and PAG608/Wig-1 occurs in the brain following lethal as well as non-lethal ischemic insults, and that ischemic preconditioning markedly diminishes this activation.


Neuroscience | 1999

The tumor suppressor p53 and its response gene p21WAF1/Cip1 are not markers of neuronal death following transient global cerebral ischemia

Gregor Tomasevic; Fredrik Kamme; P. Stubberöd; M. Wieloch; Tadeusz Wieloch

The tumor suppressor protein p53 is implicated in cell cycle arrest and DNA repair as well as in apoptosis. In the CNS, p53 has been associated with neuronal cell death following various insults, including cerebral ischemia. We investigated the expression of p53 messenger RNA and protein, and the messenger RNA expression of the p53-responsive gene p21(WAF1/CiP1, in specific hippocampal regions following 15 min of normothermic and neuroprotective hypothermic (33 degrees C) global forebrain ischemia in the rat. Both p53 and p21WAF1/Cip1 messenger RNAs were transiently induced in ischemia resistant regions following normo- and hypothermic ischemia. In the ischemia sensitive CA1 region, p53 and p21WAF1/Cip1 messenger RNAs were up-regulated throughout reperfusion following the normothermic insult. The p53 protein levels increased following the insult, most markedly in ischemia-resistant CA3 neurons after normothermic ischemia, and in the CA1 neurons following hypothermic ischemia. Concomitantly, the protein was translocated to nuclei. These findings indicate that p53 and p21WAF1/Cip1 are not markers of neuronal death following global cerebral ischemia. Their rapid and transient induction correlates with cell survival, and suggests a possible role in DNA repair.


Molecular Brain Research | 1998

Changes in proliferating cell nuclear antigen, a protein involved in DNA repair, in vulnerable hippocampal neurons following global cerebral ischemia.

Gregor Tomasevic; Fredrik Kamme; Tadeusz Wieloch

Proliferating cell nuclear antigen (PCNA) is required for completion of the DNA synthesis step of DNA replication as well as nucleotide excision repair (NER) of damaged DNA. We investigated the expression of PCNA mRNA and the levels of PCNA protein in the adult rat hippocampus following normo- and hypothermic global forebrain ischemia. Hypothermia protected the CA1 neurons from ischemic damage. A constitutive expression of PCNA mRNA and protein was detected in all hippocampal subfields, as well as in other brain regions. During reperfusion, PCNA mRNA levels were up-regulated in the vulnerable CA1 subfield at 36 h following normothermic ischemia. In hypothermia, this induction appeared already after 18 h. Following normothermic ischemia, nuclear PCNA immunoreactivity was largely abolished during reperfusion in the vulnerable CA1 neurons, prior to cell death. In contrast, total PCNA protein content of this region, as measured by Western blotting, remained largely unchanged. In the CA3 region, a transient decrease in nuclear PCNA immunoreactivity was observed. In the dentate gyrus region, no down-regulation of nuclear or total PCNA protein was observed during reperfusion. Following hypothermic ischemia, the PCNA protein levels did not decrease in any of the hippocampal subregions. In contrast, no change in the levels of Ref-1, a protein involved in base excision DNA repair (BER), was observed following normo- or hypothermic ischemia. Our findings indicate an altered functional state of PCNA protein in the ischemia-sensitive CA1 neurons suggesting that DNA repair processes are affected in these post-mitotic cells following ischemia. Impaired DNA repair may play a role in the development of postischemic neuronal damage.


Journal of Neuroscience Methods | 2000

The rotating pole test: evaluation of its effectiveness in assessing functional motor deficits following experimental head injury in the rat

Gustav Mattiasson; Matthew F. Philips; Gregor Tomasevic; Barbro B. Johansson; Tadeusz Wieloch; Tracy K. McIntosh

Neurological motor dysfunction is often an integral component of the neurological sequelae of traumatic brain injury (TBI). In experimental TBI, neurological motor testing is an outcome measure used to monitor severity of injury, and the response to treatment. This study evaluates the effectiveness and sensitivity of the rotating pole test (RP) to characterize and evaluate the temporal course of motor deficits after lateral fluid percussion (FP) injury to the rat brain. The results are compared with the previously characterized and widely used composite neuroscore of motor function (NS). The animals were required to walk across an elevated wooden pole that was either stationary or rotating to left or right directions at different speeds. Male Wistar rats underwent lateral FP injury of moderate severity (mean 2.4 atm, n = 9) or sham surgery (n = 9), and were tested at 48 h and 7 days post-injury using the NS and RP. The results of the NS directly correlated to the results of the RP, showing a significant injury effect at both 48 h and 7 days. This is the first study to show that the RP-test detects neurological motor deficits after lateral FP injury, and suggests that this technique is a reliable behavioral tool for evaluating neurological motor function in the acute period after experimental TBI.


PLOS ONE | 2015

Preservation of the blood brain barrier and cortical neuronal tissue by liraglutide, a long acting glucagon-like-1 analogue, after experimental traumatic brain injury.

Jakob Hakon; Karsten Ruscher; Bertil Romner; Gregor Tomasevic

Cerebral edema is a common complication following moderate and severe traumatic brain injury (TBI), and a significant risk factor for development of neuronal death and deterioration of neurological outcome. To this date, medical approaches that effectively alleviate cerebral edema and neuronal death after TBI are not available. Glucagon-like peptide-1 (GLP-1) has anti-inflammatory properties on cerebral endothelium and exerts neuroprotective effects. Here, we investigated the effects of GLP-1 on secondary injury after moderate and severe TBI. Male Sprague Dawley rats were subjected either to TBI by Controlled Cortical Impact (CCI) or sham surgery. After surgery, vehicle or a GLP-1 analogue, Liraglutide, were administered subcutaneously twice daily for two days. Treatment with Liraglutide (200 μg/kg) significantly reduced cerebral edema in pericontusional regions and improved sensorimotor function 48 hours after CCI. The integrity of the blood-brain barrier was markedly preserved in Liraglutide treated animals, as determined by cerebral extravasation of Evans blue conjugated albumin. Furthermore, Liraglutide reduced cortical tissue loss, but did not affect tissue loss and delayed neuronal death in the thalamus on day 7 post injury. Together, our data suggest that the GLP-1 pathway might be a promising target in the therapy of cerebral edema and cortical neuronal injury after moderate and severe TBI.


Journal of Neuroscience Research | 2010

Deletion of the p53 tumor suppressor gene improves neuromotor function but does not attenuate regional neuronal cell loss following experimental brain trauma in mice.

Gregor Tomasevic; Ramesh Raghupathi; Uwe Scherbel; Tadeusz Wieloch; Tracy K. McIntosh

Deletion of the tumor suppressor gene p53 has been shown to improve the outcome in experimental models of focal cerebral ischemia and kainate‐induced seizures. To evaluate the potential role of p53 in traumatic brain injury, genetically modified mice lacking a functional p53 gene (p53–/–, n = 9) and their wild‐type littermates (p53+/+, n = 9) were anesthetized and subjected to controlled cortical impact (CCI) experimental brain trauma. After brain injury, neuromotor function was assessed by using composite neuroscore and rotarod tests. By 7 days posttrauma, p53–/– mice exhibited significantly improved neuromotor function, in the composite neuroscore (P = 0.002) as well as in two of three individual tests, when compared with brain‐injured p53+/+ animals. CCI resulted in the formation of a cortical cavity (mean volume = 6.1 mm3) 7 days postinjury in p53+/+ as well as p53–/– mice. No difference in lesion volume was detected between the two genotypes (P = 0.95). Although significant cell loss was detected in the ipsilateral hippocampus and thalamus of brain‐injured animals, no differences between p53+/+ and p53–/– mice were detected. Although our results suggest that lack of the p53 gene results in augmented recovery of neuromotor function following experimental brain trauma, they do not support a role for p53 acting as a mediator of neuronal death in this context, underscoring the complexity of its role in the injured brain.


NeuroImage: Clinical | 2018

Multisensory stimulation improves functional recovery and resting-state functional connectivity in the mouse brain after stroke

Jakob Hakon; Miriana Jlenia Quattromani; Carin Sjölund; Gregor Tomasevic; Leeanne M. Carey; Jin-Moo Lee; Karsten Ruscher; Tadeusz Wieloch; Adam Q. Bauer

Stroke causes direct structural damage to local brain networks and indirect functional damage to distant brain regions. Neuroplasticity after stroke involves molecular changes within perilesional tissue that can be influenced by regions functionally connected to the site of injury. Spontaneous functional recovery can be enhanced by rehabilitative strategies, which provides experience-driven cell signaling in the brain that enhances plasticity. Functional neuroimaging in humans and rodents has shown that spontaneous recovery of sensorimotor function after stroke is associated with changes in resting-state functional connectivity (RS-FC) within and across brain networks. At the molecular level, GABAergic inhibitory interneurons can modulate brain plasticity in peri-infarct and remote brain regions. Among this cell-type, a decrease in parvalbumin (PV)-immunoreactivity has been associated with improved behavioral outcome. Subjecting rodents to multisensory stimulation through exposure to an enriched environment (EE) enhances brain plasticity and recovery of function after stroke. Yet, how multisensory stimulation relates to RS-FC has not been determined. In this study, we investigated the effect of EE on recovery of RS-FC and behavior in mice after stroke, and if EE-related changes in RS-FC were associated with levels of PV-expressing neurons. Photothrombotic stroke was induced in the sensorimotor cortex. Beginning 2 days after stroke, mice were housed in either standard environment (STD) or EE for 12 days. Housing in EE significantly improved lost tactile-proprioceptive function compared to mice housed in STD environment. RS-FC in the mouse was measured by optical intrinsic signal imaging 14 days after stroke or sham surgery. Stroke induced a marked reduction in RS-FC within several perilesional and remote brain regions. EE partially restored interhemispheric homotopic RS-FC between spared motor regions, particularly posterior secondary motor. Compared to mice housed in STD cages, EE exposure lead to increased RS-FC between posterior secondary motor regions and contralesional posterior parietal and retrosplenial regions. The increased regional RS-FC observed in EE mice after stroke was significantly correlated with decreased PV-immunoreactivity in the contralesional posterior motor region. In conclusion, experimental stroke and subsequent housing in EE induces dynamic changes in RS-FC in the mouse brain. Multisensory stimulation associated with EE enhances RS-FC among distinct brain regions relevant for recovery of sensorimotor function and controlled movements that may involve PV/GABA interneurons. Our results indicate that targeting neural circuitry involving spared motor regions across hemispheres by neuromodulation and multimodal sensory stimulation could improve rehabilitation after stroke.


Journal of Neurosurgery | 2001

Neuroprotective and behavioral efficacy of nerve growth factor-transfected hippocampal progenitor cell transplants after experimental traumatic brain injury

Matthew F. Philips; Gustav Mattiasson; Tadeusz Wieloch; Anders Björklund; Barbro B. Johansson; Gregor Tomasevic; Alberto Martínez-Serrano; Philipp M. Lenzlinger; Grant Sinson; M. Sean Grady; Tracy K. McIntosh


World Neurosurgery | 2015

Acute Traumatic Brain Injury: Mortality in the Elderly

Erik Herou; Bertil Romner; Gregor Tomasevic

Collaboration


Dive into the Gregor Tomasevic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tracy K. McIntosh

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge