Gregorio Fernández-Ballester
Institute of Business & Medical Careers
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregorio Fernández-Ballester.
Journal of Neurochemistry | 2003
Clara Blanes-Mira; Jaime M. Merino; Elvira Valera; Gregorio Fernández-Ballester; Luis M. Gutiérrez; Salvador Viniegra; Enrique Pérez-Payá; Antonio Ferrer-Montiel
Synthetic peptides patterned after the C‐terminus of synaptosomal associated protein of 25 kDa (SNAP25) efficiently abrogate regulated exocytosis. In contrast, the use of SNAP25 N‐terminal‐derived peptides to modulate SNAP receptors (SNARE) complex assembly and neurosecretion has not been explored. Here, we show that the N‐terminus of SNAP25, specially the segment that encompasses 22Ala‐44Ile, is essential for the formation of the SNARE complex. Peptides patterned after this protein domain are potent inhibitors of SNARE complex formation. The inhibitory activity correlated with their propensity to adopt an α‐helical secondary structure. These peptides abrogated SNARE complex formation only when added previous to the onset of aggregate assembly. Analysis of the mechanism of action revealed that these peptides disrupted the binary complex formed by SNAP25 and syntaxin. The identified peptides inhibited Ca2+‐dependent exocytosis from detergent‐permeabilized excitable cells. Noteworthy, these amino acid sequences markedly protected intact hippocampal neurones against hypoglycaemia‐induced, glutamate‐mediated excitotoxicity with a potency that rivaled that displayed by botulinum neurotoxins. Our findings indicate that peptides patterned after the N‐terminus of SNAP25 are potent inhibitors of SNARE complex formation and neuronal exocytosis. Because of their activity in intact neurones, these cell permeable peptides may be hits for antispasmodic and analgesic drug development.
Journal of Neurochemistry | 2011
Chandan Goswami; Julia Kuhn; Olayinka A. Dina; Gregorio Fernández-Ballester; Jon D. Levine; Antonio Ferrer-Montiel; Tim Hucho
J. Neurochem. (2011) 117, 995–1008.
Biochemical Journal | 2003
Clara Blanes-Mira; María Teresa Pastor; Elvira Valera; Gregorio Fernández-Ballester; Jaime M. Merino; Luis M. Gutiérrez; Enrique Pérez-Payá; Antonio Ferrer-Montiel
Synthetic peptides patterned after the proteins involved in vesicle fusion [the so-called SNARE (soluble N -ethylmaleimide-sensitive fusion protein attachment protein receptor) proteins] are potent inhibitors of SNARE complex assembly and neuronal exocytosis. It is noteworthy that the identification of peptide sequences not related to the SNARE proteins has not been accomplished yet; this is due, in part, to the structural constraints and the specificity of the protein interactions that govern the formation of the SNARE complex. Here we have addressed this question and used a combinatorial approach to identify peptides that modulate the assembly of the SNARE core complex and inhibit neuronal exocytosis. An alpha-helix-constrained, mixture-based, 17-mer combinatorial peptide library composed of 137180 sequences was synthesized in a positional scanning format. Peptide mixtures were assayed for their ability to prevent the formation of the in vitro -reconstituted SDS-resistant SNARE core complex. Library deconvolution identified eight peptides that inhibited the assembly of the SNARE core complex. Notably, the most potent 17-mer peptide (acetyl-SAAEAFAKLYAEAFAKG-NH2) abolished both Ca2+-evoked catecholamine secretion from detergent-permeabilized chromaffin cells and L-glutamate release from intact hippocampal primary cultures. Collectively, these findings indicate that amino acid sequences that prevent SNARE complex formation are not restricted to those that mimic domains of SNARE proteins, thus expanding the diversity of molecules that target neuronal exocytosis. Because of the implication of neurosecretion in the aetiology of several human neurological disorders, these newly identified peptides may be considered hits for the development of novel anti-spasmodic drugs.
Biochimica et Biophysica Acta | 2014
José A. Poveda; A.M. Giudici; Renart Ml; Molina Ml; Estefanía Montoya; Asia M. Fernández-Carvajal; Gregorio Fernández-Ballester; José A. Encinar; J.M. González-Ros
Ion channel conformational changes within the lipid membrane are a key requirement to control ion passage. Thus, it seems reasonable to assume that lipid composition should modulate ion channel function. There is increasing evidence that this implicates not just an indirect consequence of the lipid influence on the physical properties of the membrane, but also specific binding of selected lipids to certain protein domains. The result is that channel function and its consequences on excitability, contractility, intracellular signaling or any other process mediated by such channel proteins, could be subjected to modulation by membrane lipids. From this it follows that development, age, diet or diseases that alter lipid composition should also have an influence on those cellular properties. The wealth of data on the non-annular lipid binding sites in potassium channel from Streptomyces lividans (KcsA) makes this protein a good model to study the modulation of ion channel structure and function by lipids. The fact that this protein is able to assemble into clusters through the same non-annular sites, resulting in large changes in channel activity, makes these sites even more interesting as a potential target to develop lead compounds able to disrupt such interactions and hopefully, to modulate ion channel function. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cells Physiology, Pathology and Therapy.
Methods of Molecular Biology | 2006
Gregorio Fernández-Ballester; Luis Serrano
A great challenge in the proteomics and structural genomics era is to predict protein structure and function from sequence, including the identification of biological partners. The development of a procedure to construct position-specific scoring matrices for the prediction and identification of sequences with putative significant affinity faces this challenge. The local and web applications used for sequence and structure search, sequence alignment, protein modeling, molecule edition and modification, and scoring matrices construction are described in detail. The methodology is based on the information contained in structural databases and takes into account the subtle conformational and sequence details that characterize different structures within a family. Using the matrices, the protein sequence databases can be easily scanned to locate putative partners of biological significance. The success of this methodology opens the way for the prediction of protein-protein interaction at genome scale.
Journal of Cell Science | 2013
Ramón Martínez-Mármol; Mireia Pérez-Verdaguer; Sara R. Roig; Albert Vallejo-Gracia; Pelagia Gotsi; Antonio Serrano-Albarrás; María Isabel Bahamonde; Antonio Ferrer-Montiel; Gregorio Fernández-Ballester; Núria Comes; Antonio Felipe
Summary Impairment of Kv1.3 expression at the cell membrane in leukocytes and sensory neuron contributes to the pathophysiology of autoimmune diseases and sensory syndromes. Molecular mechanisms underlying Kv1.3 channel trafficking to the plasma membrane remain elusive. We report a novel non-canonical di-acidic signal (E483/484) at the C-terminus of Kv1.3 essential for anterograde transport and surface expression. Notably, homologous motifs are conserved in neuronal Kv1 and Shaker channels. Biochemical analysis revealed interactions with the Sec24 subunit of the coat protein complex II. Disruption of this complex retains the channel at the endoplasmic reticulum. A molecular model of the Kv1.3–Sec24a complex suggests salt-bridges between the di-acidic E483/484 motif in Kv1.3 and the di-basic R750/752 sequence in Sec24. These findings identify a previously unrecognized motif of Kv channels essential for their expression on the cell surface. Our results contribute to our understanding of how Kv1 channels target to the cell membrane, and provide new therapeutic strategies for the treatment of pathological conditions.
Journal of Biological Chemistry | 2008
M. Luisa Molina; Francisco N. Barrera; José A. Encinar; M. Lourdes Renart; Asia M. Fernández; José A. Poveda; Jorge Santoro; Marta Bruix; Francisco Gavilanes; Gregorio Fernández-Ballester; José L. Neira; José M. González-Ros
The effects of the inactivating peptide from the eukaryotic Shaker BK+ channel (the ShB peptide) on the prokaryotic KcsA channel have been studied using patch clamp methods. The data show that the peptide induces rapid, N-type inactivation in KcsA through a process that includes functional uncoupling of channel gating. We have also employed saturation transfer difference (STD) NMR methods to map the molecular interactions between the inactivating peptide and its channel target. The results indicate that binding of the ShB peptide to KcsA involves the ortho and meta protons of Tyr8, which exhibit the strongest STD effects; the C4H in the imidazole ring of His16; the methyl protons of Val4, Leu7, and Leu10 and the side chain amine protons of one, if not both, the Lys18 and Lys19 residues. When a noninactivating ShB-L7E mutant is used in the studies, binding to KcsA is still observed but involves different amino acids. Thus, the strongest STD effects are now seen on the methyl protons of Val4 and Leu10, whereas His16 seems similarly affected as before. Conversely, STD effects on Tyr8 are strongly diminished, and those on Lys18 and/or Lys19 are abolished. Additionally, Fourier transform infrared spectroscopy of KcsA in presence of 13C-labeled peptide derivatives suggests that the ShB peptide, but not the ShB-L7E mutant, adopts a β-hairpin structure when bound to the KcsA channel. Indeed, docking such a β-hairpin structure into an open pore model for K+ channels to simulate the inactivating peptide/channel complex predicts interactions well in agreement with the experimental observations.
Drug Design Development and Therapy | 2015
José A. Encinar; Gregorio Fernández-Ballester; Vicente Galiano-Ibarra; Vicente Micol
Peroxisome proliferator-activated receptor gamma (PPARγ) is a well-characterized member of the PPAR family that is predominantly expressed in adipose tissue and plays a significant role in lipid metabolism, adipogenesis, glucose homeostasis, and insulin sensitization. Full agonists of synthetic thiazolidinediones (TZDs) have been therapeutically used in clinical practice to treat type 2 diabetes for many years. Although it can effectively lower blood glucose levels and improve insulin sensitivity, the administration of TZDs has been associated with severe side effects. Based on recent evidence obtained with plant-derived polyphenols, the present in silico study aimed at finding new selective human PPARγ (hPPARγ) modulators that are able to improve glucose homeostasis with reduced side effects compared with TZDs. Docking experiments have been used to select compounds with strong binding affinity (ΔG values ranging from −10.0±0.9 to −11.4±0.9 kcal/mol) by docking against the binding site of several X-ray structures of hPPARγ. These putative modulators present several molecular interactions with the binding site of the protein. Additionally, most of the selected compounds have favorable druggability and good ADMET properties. These results aim to pave the way for further bench-scale analysis for the discovery of new modulators of hPPARγ that do not induce any side effects.
Biochemistry | 2012
Aaron Navarro; José A. Encinar; Blanca López-Méndez; David Aguado-Llera; Jesús Prieto; Javier Gómez; Luis Alfonso Martínez-Cruz; Oscar Millet; José M. González-Ros; Gregorio Fernández-Ballester; José L. Neira; Antonio Ferrer-Montiel
Snapin is a 15 kDa protein present in neuronal and non-neuronal cells that has been implicated in the regulation of exocytosis and endocytosis. Protein kinase A (PKA) phosphorylates Snapin at Ser-50, modulating its function. Likewise, mutation of Cys-66, which mediates protein dimerization, impairs its cellular activity. Here, we have investigated the impact of mutating these two positions on protein oligomerization, structure, and thermal stability, along with the interaction with SNARE proteins. We found that recombinant purified Snapin in solution appears mainly as dimers in equilibrium with tetramers. The protein exhibits modest secondary structure elements and notable thermal stability. Mutation of Cys-66 to Ser abolished subunit dimerization, but not higher-order oligomers. This mutant augmented the presence of α-helical structure and slightly increased the protein thermal stability. Similarly, the S50A mutant, mimicking the unphosphorylated protein, also exhibited a higher helical secondary structure content than the wild type, along with greater thermal stability. In contrast, replacement of Ser-50 with Asp (S50D), emulating the protein-phosphorylated state, produced a loss of α-helical structure, concomitant with a decrease in protein thermal stability. In vitro, the wild type and mutants weakly interacted with SNAP-25 and the reconstituted SNARE complex, although S50D exhibited the strongest binding to the SNARE complex, consistent with the observed higher cellular activity of PKA-phosphorylated Snapin. Our observations suggest that the stronger binding of S50D to SNAREs might be due to a destabilization of tetrameric assemblies of Snapin that favor the interaction of protein dimers with the SNARE proteins. Therefore, phosphorylation of Ser-50 has an important impact on the protein structure and stability that appears to underlie its functional modulation.
PLOS ONE | 2015
Ana María Fernández-Escamilla; Gregorio Fernández-Ballester; Bertrand Morel; Salvador Casares-Atienza; Juan L. Ramos
A disturbing phenomenon in contemporary medicine is the prevalence of multidrug-resistant pathogenic bacteria. Efflux pumps contribute strongly to this antimicrobial drug resistance, which leads to the subsequent failure of clinical treatments. The TtgR protein of Pseudomonas putida is a HTH-type transcriptional repressor that controls expression of the TtgABC efflux pump, which is the main contributor to resistance against several antimicrobials and toxic compounds in this microbe. One of the main strategies to modulate the bacterial resistance is the rational modification of the ligand binding target site. We report the design and characterization of four mutants-TtgRS77A, TtgRE78A, TtgRN110A and TtgRH114A - at the active ligand binding site. The biophysical characterization of the mutants, in the presence and in the absence of different antimicrobials, revealed that TtgRN110A is the variant with highest thermal stability, under any of the experimental conditions tested. EMSA experiments also showed a different dissociation pattern from the operator for TtgRN110A, in the presence of several antimicrobials, making it a key residue in the TtgR protein repression mechanism of the TtgABC efflux pump. We found that TtgRE78A stability is the most affected upon effector binding. We also probe that one mutation at the C-terminal half of helix-α4, TtgRS77A, provokes a severe protein structure distortion, demonstrating the important role of this residue in the overall protein structure and on the ligand binding site. The data provide new information and deepen the understanding of the TtgR-effector binding mechanism and consequently the TtgABC efflux pump regulation mechanism in Pseudomonas putida.