Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory A. Caputo is active.

Publication


Featured researches published by Gregory A. Caputo.


Science | 2007

Computational Design of Peptides That Target Transmembrane Helices

Hang Yin; Joanna Slusky; Bryan W. Berger; Robin Walters; Gaston Vilaire; Rustem I. Litvinov; James D. Lear; Gregory A. Caputo; Joel S. Bennett; William F. DeGrado

A variety of methods exist for the design or selection of antibodies and other proteins that recognize the water-soluble regions of proteins; however, companion methods for targeting transmembrane (TM) regions are not available. Here, we describe a method for the computational design of peptides that target TM helices in a sequence-specific manner. To illustrate the method, peptides were designed that specifically recognize the TM helices of two closely related integrins (αIIbβ3 and αvβ3) in micelles, bacterial membranes, and mammalian cells. These data show that sequence-specific recognition of helices in TM proteins can be achieved through optimization of the geometric complementarity of the target-host complex.


Chemistry: A European Journal | 2009

The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives.

Kenichi Kuroda; Gregory A. Caputo; William F. DeGrado

We synthesized cationic random amphiphilic copolymers by radical copolymerization of methacrylate monomers with cationic or hydrophobic groups and evaluated their antimicrobial and hemolytic activities. The nature of the hydrophobic groups, and polymer composition and length were systematically varied to investigate how structural parameters affect polymer activity. This allowed us to obtain the optimal composition of polymers suitable to act as non-toxic antimicrobials as well as non-selective polymeric biocides. The antimicrobial activity depends sigmoidally on the mole fraction of hydrophobic groups (f(HB)). The hemolytic activity increases as f(HB) increases and levels off at high values of f(HB), especially for the high-molecular-weight polymers. Plots of HC(50) values versus the number of hydrophobic side chains in a polymer chain for each polymer series showed a good correlation and linear relationship in the log-log plots. We also developed a theoretical model to analyze the hemolytic activity of polymers and demonstrated that the hemolytic activity can be described as a balance of membrane binding of polymers through partitioning of hydrophobic side chains into lipid layers and the hydrophobic collapsing of polymer chains. The study on the membrane binding of dye-labeled polymers to large, unilamellar vesicles showed that the hydrophobicity of polymers enhances their binding to lipid bilayers and induces collapse of the polymer chain in solution, reducing the apparent affinity of polymers for the membranes.


Macromolecular Bioscience | 2012

Poly(ethylene imine)s as antimicrobial agents with selective activity.

Katherine A. Gibney; Iva Sovadinova; Analette I. Lopez; Michael Urban; Zachary Ridgway; Gregory A. Caputo; Kenichi Kuroda

We report the structure-activity relationship in the antimicrobial activity of linear and branched poly(ethylene imine)s (L- and B-PEIs) with a range of molecular weights (MWs) (500-12,000). Both L- and B-PEIs displayed enhanced activity against Staphylococcus aureus over Escherichia coli. Both B- and L-PEIs did not cause any significant permeabilization of E. coli cytoplasmic membrane. L-PEIs induced depolarization of S. aureus membrane although B-PEIs did not. The low MW B-PEIs caused little or no hemolysis while L-PEIs are hemolytic. The low MW B-PEIs are less cytotoxic to human HEp-2 cells than other PEIs. However, they induced significant cell viability reduction after 24 h incubation. The results presented here highlight the interplay between polymer size and structure on activity.


Biochemistry | 2008

Computationally Designed Peptide Inhibitors of Protein-Protein Interactions in Membranes

Gregory A. Caputo; Rustem I. Litvinov; Wei Li; Joel S. Bennett; William F. DeGrado; Hang Yin

We recently reported a computational method (CHAMP) for designing sequence-specific peptides that bind to the membrane-embedded portions of transmembrane proteins. We successfully applied this method to design membrane-spanning peptides targeting the transmembrane domains of the alpha IIb subunit of integrin alpha IIbbeta 3. Previously, we demonstrated that these CHAMP peptides bind specifically with reasonable affinity to isolated transmembrane helices of the targeted transmembrane region. These peptides also induced integrin alpha IIbbeta 3 activation due to disruption of the helix-helix interactions between the transmembrane domains of the alpha IIb and beta 3 subunits. In this paper, we show the direct interaction of the designed anti-alpha IIb CHAMP peptide with isolated full-length integrin alpha IIbbeta 3 in detergent micelles. Further, the behavior of the designed peptides in phospholipid bilayers is essentially identical to their behavior in detergent micelles. In particular, the peptides assume a membrane-spanning alpha-helical conformation that does not disrupt bilayer integrity. The activity and selectivity of the CHAMP peptides were further explored in platelets, comfirming that anti-alpha IIb activates wild-type alpha IIbbeta 3 in whole cells as a result of its disruption of the protein-protein interactions between the alpha and beta subunits in the transmembrane regions. These results demonstrate that CHAMP is a successful chemical biology approach that can provide specific tools for probing the transmembrane domains of proteins.


Macromolecular Bioscience | 2013

Molecular design, structures, and activity of antimicrobial peptide-mimetic polymers

Haruko Takahashi; Edmund F. Palermo; Kazuma Yasuhara; Gregory A. Caputo; Kenichi Kuroda

There is an urgent need for new antibiotics which are effective against drug-resistant bacteria without contributing to resistance development. We have designed and developed antimicrobial copolymers with cationic amphiphilic structures based on the mimicry of naturally occurring antimicrobial peptides. These copolymers exhibit potent antimicrobial activity against a broad spectrum of bacteria including methicillin-resistant Staphylococcus aureus with no adverse hemolytic activity. Notably, these polymers also did not result in any measurable resistance development in E. coli. The peptide-mimetic design principle offers significant flexibility and diversity in the creation of new antimicrobial materials and their potential biomedical applications.


Biochemistry | 2008

pH-Induced Conformational Change of the Influenza M2 Protein C-Terminal Domain†

Phuong A. Nguyen; Cinque S. Soto; Alexei L. Polishchuk; Gregory A. Caputo; Chad D. Tatko; Chunlong Ma; Yuki Ohigashi; Lawrence H. Pinto; William F. DeGrado; Kathleen P. Howard

The M2 protein from influenza A is a pH-activated proton channel that plays an essential role in the viral life cycle and serves as a drug target. Using spin labeling EPR spectroscopy, we studied a 38-residue M2 peptide spanning the transmembrane region and its C-terminal extension. We obtained residue-specific environmental parameters under both high- and low-pH conditions for nine consecutive C-terminal sites. The region forms a membrane surface helix at both high and low pH, although the arrangement of the monomers within the tetramer changes with pH. Both electrophysiology and EPR data point to a critical role for residue Lys 49.


Journal of Biological Chemistry | 2006

Activation of Platelet αIIbβ3 by an Exogenous Peptide Corresponding to the Transmembrane Domain of αIIb

Hang Yin; Rustem I. Litvinov; Gaston Vilaire; Hua Zhu; Wei Li; Gregory A. Caputo; David T. Moore; James D. Lear; John W. Weisel; William F. DeGrado; Joel S. Bennett

A transmembrane domain heterodimer, acting in concert with a membrane-proximal cytoplasmic domain clasp, is thought to maintain integrins in a low affinity state. To test whether helix-helix interactions between the αIIb and β3 transmembrane domains regulate the activity of integrin αIIbβ3, we synthesized a soluble peptide corresponding to the αIIb transmembrane domain, designated αIIb-TM, and we studied its ability to affect αIIbβ3 activity in human platelets. αIIb-TM was α-helical in detergent micelles and phospholipid vesicles, readily inserted into membrane bilayers, bound to intact purified αIIbβ3, and specifically associated with the transmembrane domain of αIIb, rather than the transmembrane domains of β3, α2, and β1, other integrin subunits present in platelets. When added to suspensions of gel-filtered platelets, αIIb-TM rapidly induced platelet aggregation that was not inhibited by preincubating platelets with the prostaglandin E1 or the ADP scavenger apyrase but was prevented by the divalent cation chelator EDTA. Furthermore, αIIb-TM induced fibrinogen binding to platelets but not the binding of osteopontin, a specific ligand for platelet αvβ3. The peptide also induced fibrinogen binding to recombinant αIIbβ3 expressed by Chinese hamster ovary cells, confirming that its effect was independent of platelet signal transduction. Finally, transmission electron microscopy of purified αIIbβ3 revealed that αIIb-TM shifted the integrin from a closed configuration with its stalks touching to an open configuration with separated stalks. These observations demonstrate that transmembrane domain interactions regulate integrin function in situ and that it is possible to target intra-membranous protein-protein interactions in a way that can have functional consequences.


Antimicrobial Agents and Chemotherapy | 2011

Antibacterial Mechanism of Action of Arylamide Foldamers.

Bruk Mensa; Yong Ho Kim; Sungwook Choi; Richard W. Scott; Gregory A. Caputo; William F. DeGrado

ABSTRACT Small arylamide foldamers designed to mimic the amphiphilic nature of antimicrobial peptides (AMPs) have shown potent bactericidal activity against both Gram-negative and Gram-positive strains without many of the drawbacks of natural AMPs. These foldamers were shown to cause large changes in the permeability of the outer membrane of Escherichia coli. They cause more limited permeabilization of the inner membrane which reaches critical levels corresponding with the time required to bring about bacterial cell death. Transcriptional profiling of E. coli treated with sublethal concentrations of the arylamides showed induction of genes related to membrane and oxidative stresses, with some overlap with the effects observed for polymyxin B. Protein secretion into the periplasm and the outer membrane is also compromised, possibly contributing to the lethality of the arylamide compounds. The induction of membrane stress response regulons such as rcs coupled with morphological changes at the membrane observed by electron microscopy suggests that the activity of the arylamides at the membrane represents a significant contribution to their mechanism of action.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Determination of the membrane topology of Ost4p and its subunit interactions in the oligosaccharyltransferase complex in Saccharomyces cerevisiae

Hyun Kim; Qi Yan; Gunnar von Heijne; Gregory A. Caputo; William J. Lennarz

Ost4p is a minimembrane protein containing only 36 amino acids and is a subunit of oligosaccharyltransferase (OT) in Saccharomyces cerevisiae. It was found previously when amino acid residues 18–25 of Ost4p were mutated to ionizable amino acids and defects were observed in the interaction between Ost4p and either Stt3p or Ost3p, two other components of OT. The transmembrane segment of Ost4p is likely to extend from residues 10–25. This is consistent with the finding that α-helicity is estimated to be 36% by CD analysis of synthetic Ost4p in liposomes. This value is in reasonable agreement with the assumption that amino acids 10–25 (16 of 36 or 44%) are transmembrane. Therefore, the mutation-sensitive region (residues 18–25) is localized to only one half of the putative transmembrane domain of Ost4p. To learn where this region of Ost4p is situated in relation to the faces of endoplasmic reticulum (ER) membrane, we determined the membrane topology of Ost4p using an in vivo method and established that it is an Nlumen-Ccyto, type I membrane protein. These results indicate that the mutation-sensitive region of Ost4p is localized in the cytoplasmic leaflet of the ER membrane. In the current study, we also observed a loss of direct interaction between Ost3p and Stt3p in the presence of ost4 temperature-sensitive mutants, which indicates Ost4p, via interactions with amino acid residues in the cytosolic leaflet of the ER membrane, functions to bind these two proteins together in a subcomplex of OT.


Angewandte Chemie | 2010

Role of the conformational rigidity in the design of biomimetic antimicrobial compounds.

Andrey Ivankin; Liran Livne; Amram Mor; Gregory A. Caputo; William F. DeGrado; Mati Meron; Binhua Lin; David Gidalevitz

A link between structural flexibility of biomimetic antimicrobials and their ability to penetrate into the hydrophobic core and disrupt the integrity of bacterial lipid model membranes has been established using liquid surface X-ray scattering techniques. Results indicate that the modes of interaction of flexible and conformationally restrained antimicrobials with the bacterial membranes are different.

Collaboration


Dive into the Gregory A. Caputo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hang Yin

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge