Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory B. Martin is active.

Publication


Featured researches published by Gregory B. Martin.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000

C. Robin Buell; Vinita Joardar; Magdalen Lindeberg; Jeremy D. Selengut; Ian T. Paulsen; Michelle L. Gwinn; Robert J. Dodson; Robert T. DeBoy; A. Scott Durkin; James F. Kolonay; Ramana Madupu; Sean C. Daugherty; Lauren M. Brinkac; Maureen J. Beanan; Daniel H. Haft; William C. Nelson; Tanja Davidsen; Nikhat Zafar; Liwei Zhou; Jia Liu; Qiaoping Yuan; Hoda Khouri; Nadia Fedorova; Bao Tran; Daniel Russell; Kristi Berry; Teresa Utterback; Susan Van Aken; Tamara Feldblyum; Mark D'Ascenzo

We report the complete genome sequence of the model bacterial pathogen Pseudomonas syringae pathovar tomato DC3000 (DC3000), which is pathogenic on tomato and Arabidopsis thaliana. The DC3000 genome (6.5 megabases) contains a circular chromosome and two plasmids, which collectively encode 5,763 ORFs. We identified 298 established and putative virulence genes, including several clusters of genes encoding 31 confirmed and 19 predicted type III secretion system effector proteins. Many of the virulence genes were members of paralogous families and also were proximal to mobile elements, which collectively comprise 7% of the DC3000 genome. The bacterium possesses a large repertoire of transporters for the acquisition of nutrients, particularly sugars, as well as genes implicated in attachment to plant surfaces. Over 12% of the genes are dedicated to regulation, which may reflect the need for rapid adaptation to the diverse environments encountered during epiphytic growth and pathogenesis. Comparative analyses confirmed a high degree of similarity with two sequenced pseudomonads, Pseudomonas putida and Pseudomonas aeruginosa, yet revealed 1,159 genes unique to DC3000, of which 811 lack a known function.


Science | 1996

Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pto Kinase

Xiaoyan Tang; Reid D. Frederick; Jianmin Zhou; Dennis A. Halterman; Yulin Jia; Gregory B. Martin

Resistance to bacterial speck disease in tomato occurs when the Pto kinase in the plant responds to expression of the avirulence gene avrPto in the Pseudomonas pathogen. Transient expression of an avrPto transgene in plant cells containing Pto elicited a defense response. In the yeast two-hybrid system, the Pto kinase physically interacted with AvrPto. Alterations of AvrPto or Pto that disrupted the interaction in yeast also abolished disease resistance in plants. The physical interaction of AvrPto and Pto provides an explanation of gene-for-gene specificity in bacterial speck disease resistance.


The EMBO Journal | 1997

The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes

Jianmin Zhou; Xiaoyan Tang; Gregory B. Martin

In tomato, the Pto kinase confers resistance to bacterial speck disease by recognizing the expression of a corresponding avirulence gene, avrPto, in the pathogen Pseudomonas syringae pv. tomato. Using the yeast two‐hybrid system, we have identified three genes, Pti4, Pti5 and Pti6, that encode proteins that physically interact with the Pto kinase. Pti4/5/6 each encode a protein with characteristics that are typical of transcription factors and are similar to the tobacco ethylene‐responsive element‐binding proteins (EREBPs). Using a gel mobility‐shift assay, we demonstrate that, similarly to EREBPs, Pti4/5/6 specifically recognize and bind to a DNA sequence that is present in the promoter region of a large number of genes encoding ‘pathogenesis‐related’ (PR) proteins. Expression of several PR genes and a tobacco EREBP gene is specifically enhanced upon Pto–avrPto recognition in tobacco. These observations establish a direct connection between a disease resistance gene and the specific activation of plant defense genes.


The Plant Cell | 2005

Transcriptome and Selected Metabolite Analyses Reveal Multiple Points of Ethylene Control during Tomato Fruit Development

Rob Alba; Paxton Payton; Zhanjun Fei; Ryan McQuinn; Paul Debbie; Gregory B. Martin; Steven D. Tanksley; James J. Giovannoni

Transcriptome profiling via cDNA microarray analysis identified 869 genes that are differentially expressed in developing tomato (Solanum lycopersicum) pericarp. Parallel phenotypic and targeted metabolite comparisons were employed to inform the expression analysis. Transcript accumulation in tomato fruit was observed to be extensively coordinated and often completely dependent on ethylene. Mutation of an ethylene receptor (Never-ripe [Nr]), which reduces ethylene sensitivity and inhibits ripening, alters the expression of 37% of these 869 genes. Nr also influences fruit morphology, seed number, ascorbate accumulation, carotenoid biosynthesis, ethylene evolution, and the expression of many genes during fruit maturation, indicating that ethylene governs multiple aspects of development both prior to and during fruit ripening in tomato. Of the 869 genes identified, 628 share homology (E-value ≤1 × 10−10) with known gene products or known protein domains. Of these 628 loci, 72 share homology with previously described signal transduction or transcription factors, suggesting complex regulatory control. These results demonstrate multiple points of ethylene regulatory control during tomato fruit development and provide new insights into the molecular basis of ethylene-mediated ripening.


Cell Host & Microbe | 2008

Bacterial Effectors Target the Common Signaling Partner BAK1 to Disrupt Multiple MAMP Receptor-Signaling Complexes and Impede Plant Immunity

Libo Shan; Ping He; Jianming Li; Antje Heese; Scott C. Peck; Thorsten Nürnberger; Gregory B. Martin; Jen Sheen

Successful pathogens have evolved strategies to interfere with host immune systems. For example, the ubiquitous plant pathogen Pseudomonas syringae injects two sequence-distinct effectors, AvrPto and AvrPtoB, to intercept convergent innate immune responses stimulated by multiple microbe-associated molecular patterns (MAMPs). However, the direct host targets and precise molecular mechanisms of bacterial effectors remain largely obscure. We show that AvrPto and AvrPtoB bind the Arabidopsis receptor-like kinase BAK1, a shared signaling partner of both the flagellin receptor FLS2 and the brassinosteroid receptor BRI1. This targeting interferes with ligand-dependent association of FLS2 with BAK1 during infection. It also impedes BAK1-dependent host immune responses to diverse other MAMPs and brassinosteroid signaling. Significantly, the structural basis of AvrPto-BAK1 interaction appears to be distinct from AvrPto-Pto association required for effector-triggered immunity. These findings uncover a unique strategy of bacterial pathogenesis where virulence effectors block signal transmission through a key common component of multiple MAMP-receptor complexes.


The EMBO Journal | 2003

Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death

Robert B. Abramovitch; Young Jin Kim; Shaorong Chen; Martin B. Dickman; Gregory B. Martin

The AvrPtoB type III effector protein is conserved among diverse genera of plant pathogens suggesting it plays an important role in pathogenesis. Here we report that Pseudomonas AvrPtoB acts inside the plant cell to inhibit programmed cell death (PCD) initiated by the Pto and Cf9 disease resistance proteins and, remarkably, the pro‐apoptotic mouse protein Bax. AvrPtoB also suppressed PCD in yeast, demonstrating that AvrPtoB functions as a cell death inhibitor across kingdoms. Using truncated AvrPtoB proteins, we identified distinct N‐ and C‐terminal domains of AvrPtoB that are sufficient for host recognition and PCD inhibition, respectively. We also identified a novel resistance phenotype, Rsb, that is triggered by an AvrPtoB truncation disrupted in the anti‐PCD domain. A Pseudomonas syringae pv. tomato DC3000 strain with a chromosomal mutation in the AvrPtoB C‐terminus elicited Rsb‐mediated immunity in previously susceptible tomato plants and disease was restored when full‐length AvrPtoB was expressed in trans. Thus, our results indicate that a type III effector can induce plant susceptibility to bacterial infection by inhibiting host PCD.


Cell | 1995

The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response

Jianmin Zhou; Ying-Tsu Loh; Ray A. Bressan; Gregory B. Martin

The Pto gene encodes a serine/threonine kinase that confers resistance to bacterial speck disease in tomato. Using the yeast two-hybrid system, we identified a second serine/threonine kinase, Pto-interacting 1 (Pti1), that physically interacts with Pto. Cross-phosphorylation assays revealed that Pto specifically phosphorylates Pti1 and that Pti1 does not phosphorylate Pto. Fen, another serine/threonine kinase from tomato that is closely related to Pto, was unable to phosphorylate Pti1 and was not phosphorylated by Pti1. Expression of a Pti1 transgene in tobacco plants enhanced the hypersensitive response to a P. syringae pv. tabaci strain carrying the avirulence gene avrPto. These findings indicate that Pti1 is involved in a Pto-mediated signaling pathway, probably by acting as a component downstream of Pto in a phosphorylation cascade.


Nature Reviews Molecular Cell Biology | 2006

Bacterial elicitation and evasion of plant innate immunity.

Robert B. Abramovitch; Jeffrey C. Anderson; Gregory B. Martin

Recent research on plant responses to bacterial attack has identified extracellular and intracellular host receptors that recognize conserved pathogen-associated molecular patterns and more specialized virulence proteins, respectively. These findings have shed light on our understanding of the molecular mechanisms by which bacteria elicit host defences and how pathogens have evolved to evade or suppress these defences.


The Plant Cell | 2002

Deductions about the Number, Organization, and Evolution of Genes in the Tomato Genome Based on Analysis of a Large Expressed Sequence Tag Collection and Selective Genomic Sequencing

Rutger Van der Hoeven; Catherine M. Ronning; James J. Giovannoni; Gregory B. Martin; Steven D. Tanksley

Analysis of a collection of 120,892 single-pass ESTs, derived from 26 different tomato cDNA libraries and reduced to a set of 27,274 unique consensus sequences (unigenes), revealed that 70% of the unigenes have identifiable homologs in the Arabidopsis genome. Genes corresponding to metabolism have remained most conserved between these two genomes, whereas genes encoding transcription factors are among the fastest evolving. The majority of the 10 largest conserved multigene families share similar copy numbers in tomato and Arabidopsis, suggesting that the multiplicity of these families may have occurred before the divergence of these two species. An exception to this multigene conservation was observed for the E8-like protein family, which is associated with fruit ripening and has higher copy number in tomato than in Arabidopsis. Finally, six BAC clones from different parts of the tomato genome were isolated, genetically mapped, sequenced, and annotated. The combined analysis of the EST database and these six sequenced BACs leads to the prediction that the tomato genome encodes ∼35,000 genes, which are sequestered largely in euchromatic regions corresponding to less than one-quarter of the total DNA in the tomato nucleus.


The Plant Cell | 2002

Tomato Transcription Factors Pti4, Pti5, and Pti6 Activate Defense Responses When Expressed in Arabidopsis

Yong-Qiang Gu; Mary C. Wildermuth; Suma Chakravarthy; Ying-Tsu Loh; Caimei Yang; Xiaohua He; Yu Han; Gregory B. Martin

The Pti4, Pti5, and Pti6 proteins from tomato were identified based on their interaction with the product of the Pto disease resistance gene, a Ser-Thr protein kinase. They belong to the ethylene-response factor (ERF) family of plant-unique transcription factors and bind specifically to the GCC-box cis element present in the promoters of many pathogenesis-related (PR) genes. Here, we show that these tomato ERFs are localized to the nucleus and function in vivo as transcription activators that regulate the expression of GCC box–containing PR genes. Expression of Pti4, Pti5, or Pti6 in Arabidopsis activated the expression of the salicylic acid–regulated genes PR1 and PR2. Expression of jasmonic acid– and ethylene-regulated genes, such as PR3, PR4, PDF1.2, and Thi2.1, was affected differently by each of the three tomato ERFs, with Arabidopsis-Pti4 plants having very high levels of PDF1.2 transcripts. Exogenous application of salicylic acid to Arabidopsis-Pti4 plants suppressed the increased expression of PDF1.2 but further stimulated PR1 expression. Arabidopsis plants expressing Pti4 displayed increased resistance to the fungal pathogen Erysiphe orontii and increased tolerance to the bacterial pathogen Pseudomonas syringae pv tomato. These results indicate that Pti4, Pti5, and Pti6 activate the expression of a wide array of PR genes and play important and distinct roles in plant defense.

Collaboration


Dive into the Gregory B. Martin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sophia K. Ekengren

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar

Xiaoyan Tang

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

Zhangjun Fei

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge