Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grégory Boël is active.

Publication


Featured researches published by Grégory Boël.


The EMBO Journal | 2003

Transmembrane modulator-dependent bacterial tyrosine kinase activates UDP-glucose dehydrogenases

Ivan Mijakovic; Sandrine Poncet; Grégory Boël; Alain Mazé; Sylvie Gillet; Emmanuel Jamet; Paulette Decottignies; Christophe Grangeasse; Patricia Doublet; Pierre Le Maréchal; Josef Deutscher

Protein‐tyrosine kinases regulating bacterial exopolysaccharide synthesis autophosphorylate on tyrosines located in a conserved C‐terminal region. So far no other substrates have been identified for these kinases. Here we demonstrate that Bacillus subtilis YwqD not only autophosphorylates at Tyr‐228, but that it also phosphorylates the two UDP‐glucose dehydrogenases (UDP‐glucose DHs) YwqF and TuaD at a tyrosine residue. However, phosphorylation of YwqF and TuaD occurs only in the presence of the transmembrane protein YwqC. The presumed intracellular C‐terminal part of YwqC (last 50 amino acids) seems to interact with the tyrosine‐kinase and to allow YwqD‐catalysed phosphorylation of the two UDP‐glucose DHs, which are key enzymes for the synthesis of acidic polysaccharides. However, only when phosphorylated by YwqD do the two enzymes exhibit detectable UDP‐glucose DH activity. Dephosphorylation of P‐Tyr‐YwqF and P‐Tyr‐TuaD by the P‐Tyr‐protein phosphatase YwqE switched off their UDP‐glucose DH activity. YwqE, which is encoded by the fourth gene of the B.subtilis ywqCDEF operon, also dephosphorylates P‐Tyr‐YwqD.


Journal of Bacteriology | 2010

Complete Genome Sequence of the Probiotic Lactobacillus casei Strain BL23

Alain Mazé; Grégory Boël; Manuel Zúñiga; Alexa Bourand; Valentin Loux; María J. Yebra; Vicente Monedero; Karine Correia; Noémie Jacques; Sophie Beaufils; Sandrine Poncet; Philippe Joyet; Eliane Milohanic; Serge Casaregola; Yanick Auffray; Gaspar Pérez-Martínez; Jean-François Gibrat; Monique Zagorec; Christof Francke; Axel Hartke; Josef Deutscher

The entire genome of Lactobacillus casei BL23, a strain with probiotic properties, has been sequenced. The genomes of BL23 and the industrially used probiotic strain Shirota YIT 9029 (Yakult) seem to be very similar.


Nature | 2016

Codon influence on protein expression in E. coli correlates with mRNA levels

Grégory Boël; Reka R. Letso; Helen Neely; W. Nicholson Price; Kam Ho Wong; Min Su; Jon D. Luff; Mayank Valecha; John K. Everett; Thomas B. Acton; Rong Xiao; Gaetano T. Montelione; Daniel P. Aalberts; John F. Hunt

Degeneracy in the genetic code, which enables a single protein to be encoded by a multitude of synonymous gene sequences, has an important role in regulating protein expression, but substantial uncertainty exists concerning the details of this phenomenon. Here we analyse the sequence features influencing protein expression levels in 6,348 experiments using bacteriophage T7 polymerase to synthesize messenger RNA in Escherichia coli. Logistic regression yields a new codon-influence metric that correlates only weakly with genomic codon-usage frequency, but strongly with global physiological protein concentrations and also mRNA concentrations and lifetimes in vivo. Overall, the codon content influences protein expression more strongly than mRNA-folding parameters, although the latter dominate in the initial ~16 codons. Genes redesigned based on our analyses are transcribed with unaltered efficiency but translated with higher efficiency in vitro. The less efficiently translated native sequences show greatly reduced mRNA levels in vivo. Our results suggest that codon content modulates a kinetic competition between protein elongation and mRNA degradation that is a central feature of the physiology and also possibly the regulation of translation in E. coli.


Journal of Molecular Microbiology and Biotechnology | 2003

Transcription Regulators Potentially Controlled by HPr Kinase/Phosphorylase in Gram-Negative Bacteria

Grégory Boël; Ivan Mijakovic; Alain Mazé; Sandrine Poncet; Muhamed-Kheir Taha; Mireille Larribe; Emmanuelle Darbon; Arbia Khemiri; Anne Galinier; Josef Deutscher

Phosphorylation and dephosphorylation at Ser-46 in HPr, a phosphocarrier protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) is controlled by the bifunctional HPr kinase/phosphorylase (HprK/P). In Gram-positive bacteria, P-Ser-HPr controls (1) sugar uptake via the PTS; (2) catabolite control protein A (CcpA)-mediated carbon catabolite repression, and (3) inducer exclusion. Genome sequencing revealed that HprK/P is absent from Gram-negative enteric bacteria, but present in many other proteobacteria. These organisms also possess (1) HPr, the substrate for HprK/P; (2) enzyme I, which phosphorylates HPr at His-15, and (3) one or several enzymes IIA, which receive the phosphoryl group from P∼His-HPr. The genes encoding the PTS proteins are often organized in an operon with hprK. However, most of these organisms miss CcpA and a functional PTS, as enzymes IIB and membrane-integrated enzymes IIC seem to be absent. HprK/P and the rudimentary PTS phosphorylation cascade in Gram-negative bacteria must therefore carry out functions different from those in Gram-positive organisms. The gene organization in many HprK/P-containing Gram-negative bacteria as well as some preliminary experiments suggest that HprK/P might control transcription regulators implicated in cell adhesion and virulence. In α-proteobacteria, hprK is located downstream of genes encoding a two-component system of the EnvZ/OmpR family. In several other proteobacteria, hprK is organized in an operon together with genes from the rpoN region of Escherichia coli (rpoN encodes a σ54). We propose that HprK/P might control the phosphorylation state of HPr and EIIAs, which in turn could control the transcription regulators.


Nature Structural & Molecular Biology | 2014

The ABC-F protein EttA gates ribosome entry into the translation elongation cycle

Grégory Boël; Paul C Smith; Wei Ning; Michael T. Englander; Bo Chen; Yaser Hashem; Anthony J Testa; Jeffrey J. Fischer; Hans-Joachim Wieden; Joachim Frank; Ruben L. Gonzalez; John F. Hunt

ABC-F proteins have evaded functional characterization even though they compose one of the most widely distributed branches of the ATP-binding cassette (ABC) superfamily. Herein, we demonstrate that YjjK, the most prevalent eubacterial ABC-F protein, gates ribosome entry into the translation elongation cycle through a nucleotide-dependent interaction sensitive to ATP/ADP ratio. Accordingly, we rename this protein energy-dependent translational throttle A (EttA). We determined the crystal structure of Escherichia coli EttA and used it to design mutants for biochemical studies including enzymological assays of the initial steps of protein synthesis. These studies suggest that EttA may regulate protein synthesis in energy-depleted cells, which have a low ATP/ADP ratio. Consistently with this inference, EttA-deleted cells exhibit a severe fitness defect in long-term stationary phase. These studies demonstrate that an ABC-F protein regulates protein synthesis via a new mechanism sensitive to cellular energy status.


Nature Structural & Molecular Biology | 2014

EttA regulates translation by binding the ribosomal E site and restricting ribosome-tRNA dynamics

Bo Chen; Grégory Boël; Yaser Hashem; Wei Ning; Jingyi Fei; Chi Wang; Ruben L. Gonzalez; John F. Hunt; Joachim Frank

Cells express many ribosome-interacting factors whose functions and molecular mechanisms remain unknown. Here, we elucidate the mechanism of a newly characterized regulatory translation factor, energy-dependent translational throttle A (EttA), which is an Escherichia coli representative of the ATP-binding cassette F (ABC-F) protein family. Using cryo-EM, we demonstrate that the ATP-bound form of EttA binds to the ribosomal tRNA-exit site, where it forms bridging interactions between the ribosomal L1 stalk and the tRNA bound in the peptidyl-tRNA–binding site. Using single-molecule fluorescence resonance energy transfer, we show that the ATP-bound form of EttA restricts ribosome and tRNA dynamics required for protein synthesis. This work represents the first example, to our knowledge, in which the detailed molecular mechanism of any ABC-F family protein has been determined and establishes a framework for elucidating the mechanisms of other regulatory translation factors.


Molecular & Cellular Proteomics | 2011

Physiological Response to Membrane Protein Overexpression in E. coli

Francesca Gubellini; Grégory Verdon; Nathan K. Karpowich; Jon D. Luff; Grégory Boël; Nils C. Gauthier; Samuel K. Handelman; Sarah E. Ades; John F. Hunt

Overexpression represents a principal bottleneck in structural and functional studies of integral membrane proteins (IMPs). Although E. coli remains the leading organism for convenient and economical protein overexpression, many IMPs exhibit toxicity on induction in this host and give low yields of properly folded protein. Different mechanisms related to membrane biogenesis and IMP folding have been proposed to contribute to these problems, but there is limited understanding of the physical and physiological constraints on IMP overexpression and folding in vivo. Therefore, we used a variety of genetic, genomic, and microscopy techniques to characterize the physiological responses of Escherichia coli MG1655 cells to overexpression of a set of soluble proteins and IMPs, including constructs exhibiting different levels of toxicity and producing different levels of properly folded versus misfolded product on induction. Genetic marker studies coupled with transcriptomic results indicate only minor perturbations in many of the physiological systems implicated in previous studies of IMP biogenesis. Overexpression of either IMPs or soluble proteins tends to block execution of the standard stationary-phase transcriptional program, although these effects are consistently stronger for the IMPs included in our study. However, these perturbations are not an impediment to successful protein overexpression. We present evidence that, at least for the target proteins included in our study, there is no inherent obstacle to IMP overexpression in E. coli at moderate levels suitable for structural studies and that the biochemical and conformational properties of the proteins themselves are the major obstacles to success. Toxicity associated with target protein activity produces selective pressure leading to preferential growth of cells harboring expression-reducing and inactivating mutations, which can produce chemical heterogeneity in the target protein population, potentially contributing to the difficulties encountered in IMP crystallization.


Journal of Biological Chemistry | 2010

Streptococcus pyogenes Ser/Thr Kinase-regulated Cell Wall Hydrolase Is a Cell Division Plane-recognizing and Chain-forming Virulence Factor

Vijay Pancholi; Grégory Boël; Hong Jin

Cell division and cell wall synthesis are closely linked complex phenomena and play a crucial role in the maintenance and regulation of bacterial virulence. Eukaryotic-type Ser/Thr kinases reported in prokaryotes, including that in group A Streptococcus (GAS) (Streptococcus pyogenes Ser/Thr kinase (SP-STK)), regulate cell division, growth, and virulence. The mechanism of this regulation is, however, unknown. In this study, we demonstrated that SP-STK-controlled cell division is mediated under the positive regulation of secretory protein that possesses a cysteine and histidine-dependent aminohydrolases/peptidases (CHAP) domain with functionally active cell wall hydrolase activity (henceforth named as CdhA (CHAP-domain-containing and chain-forming cell wall hydrolase). Deletion of the CdhA-encoding gene resulted in severe cell division and growth defects in GAS mutants. The mutant expressing the truncated CdhA (devoid of the CHAP domain), although displayed no such defects, it became attenuated for virulence in mice and highly susceptible to cell wall-acting antibiotics, as observed for the mutant lacking CdhA. When CdhA was overexpressed in the wild-type GAS as well as in heterologous strains, Escherichia coli and Staphylococcus aureus, we observed a distinct increase in bacterial chain length. Our data reveal that CdhA is a multifunctional protein with a major function of the N-terminal region as a cell division plane-recognizing domain and that of the C-terminal CHAP domain as a virulence-regulating domain. CdhA is thus an important therapeutic target.


Journal of Bacteriology | 2013

Utilization of d-Ribitol by Lactobacillus casei BL23 Requires a Mannose-Type Phosphotransferase System and Three Catabolic Enzymes

Alexa Bourand; María J. Yebra; Grégory Boël; Alain Mazé; Josef Deutscher

Lactobacillus casei strains 64H and BL23, but not ATCC 334, are able to ferment D-ribitol (also called D-adonitol). However, a BL23-derived ptsI mutant lacking enzyme I of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) was not able to utilize this pentitol, suggesting that strain BL23 transports and phosphorylates D-ribitol via a PTS. We identified an 11-kb region in the genome sequence of L. casei strain BL23 (LCABL_29160 to LCABL_29270) which is absent from strain ATCC 334 and which contains the genes for a GlpR/IolR-like repressor, the four components of a mannose-type PTS, and six metabolic enzymes potentially involved in D-ribitol metabolism. Deletion of the gene encoding the EIIB component of the presumed ribitol PTS indeed prevented D-ribitol fermentation. In addition, we overexpressed the six catabolic genes, purified the encoded enzymes, and determined the activities of four of them. They encode a D-ribitol-5-phosphate (D-ribitol-5-P) 2-dehydrogenase, a D-ribulose-5-P 3-epimerase, a D-ribose-5-P isomerase, and a D-xylulose-5-P phosphoketolase. In the first catabolic step, the protein D-ribitol-5-P 2-dehydrogenase uses NAD(+) to oxidize D-ribitol-5-P formed during PTS-catalyzed transport to D-ribulose-5-P, which, in turn, is converted to D-xylulose-5-P by the enzyme D-ribulose-5-P 3-epimerase. Finally, the resulting D-xylulose-5-P is split by D-xylulose-5-P phosphoketolase in an inorganic phosphate-requiring reaction into acetylphosphate and the glycolytic intermediate D-glyceraldehyde-3-P. The three remaining enzymes, one of which was identified as D-ribose-5-P-isomerase, probably catalyze an alternative ribitol degradation pathway, which might be functional in L. casei strain 64H but not in BL23, because one of the BL23 genes carries a frameshift mutation.


Cell systems | 2017

Codon Clarity or Conundrum

Daniel P. Aalberts; Grégory Boël; John F. Hunt

Synonymous variations in protein-coding sequences alter protein expression dynamics, which has important implications for cellular physiology and evolutionary fitness, but disentangling the underlying molecular mechanisms remains challenging.

Collaboration


Dive into the Grégory Boël's collaboration.

Top Co-Authors

Avatar

Alain Mazé

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandrine Poncet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Mijakovic

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Anne Galinier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arbia Khemiri

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge