Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory C. Beroza is active.

Publication


Featured researches published by Gregory C. Beroza.


Science | 1993

Seismicity Remotely Triggered by the Magnitude 7.3 Landers, California, Earthquake

David P. Hill; Paul A. Reasenberg; Andrew J. Michael; W.J. Arabaz; Gregory C. Beroza; D. Brumbaugh; James N. Brune; Raúl R. Castro; S. Davis; D. Depolo; William L. Ellsworth; Joan Gomberg; S.C. Harmsen; L. House; S.M. Jackson; M. J. S. Johnston; Lucile M. Jones; Rebecca Hylton Keller; Stephen D. Malone; Luis Munguía; S. Nava; J.C. Pechmann; A. Sanford; Robert W. Simpson; Robert B. Smith; M. Stark; Michael C. Stickney; Antonio Vidal; S. Walter; Victor Wong

The magnitude 7.3 Landers earthquake of 28 June 1992 triggered a remarkably sudden and widespread increase in earthquake activity across much of the western United States. The triggered earthquakes, which occurred at distances up to 1250 kilometers (17 source dimensions) from the Landers mainshock, were confined to areas of persistent seismicity and strike-slip to normal faulting. Many of the triggered areas also are sites of geothermal and recent volcanic activity. Static stress changes calculated for elastic models of the earthquake appear to be too small to have caused the triggering. The most promising explanations involve nonlinear interactions between large dynamic strains accompanying seismic waves from the mainshock and crustal fluids (perhaps including crustal magma).


Nature | 2006

Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip

David R. Shelly; Gregory C. Beroza; Satoshi Ide; Sho Nakamula

Non-volcanic seismic tremor was discovered in the Nankai trough subduction zone in southwest Japan and subsequently identified in the Cascadia subduction zone. In both locations, tremor is observed to coincide temporally with large, slow slip events on the plate interface downdip of the seismogenic zone. The relationship between tremor and aseismic slip remains uncertain, however, largely owing to difficulty in constraining the source depth of tremor. In southwest Japan, a high quality borehole seismic network allows identification of coherent S-wave (and sometimes P-wave) arrivals within the tremor, whose sources are classified as low-frequency earthquakes. As low-frequency earthquakes comprise at least a portion of tremor, understanding their mechanism is critical to understanding tremor as a whole. Here, we provide strong evidence that these earthquakes occur on the plate interface, coincident with the inferred zone of slow slip. The locations and characteristics of these events suggest that they are generated by shear slip during otherwise aseismic transients, rather than by fluid flow. High pore-fluid pressure in the immediate vicinity, as implied by our estimates of seismic P- and S-wave speeds, may act to promote this transient mode of failure. Low-frequency earthquakes could potentially contribute to seismic hazard forecasting by providing a new means to monitor slow slip at depth.


Nature | 2007

Non-volcanic tremor and low-frequency earthquake swarms

David R. Shelly; Gregory C. Beroza; Satoshi Ide

Non-volcanic tremor is a weak, extended duration seismic signal observed episodically on some major faults, often in conjunction with slow slip events. Such tremor may hold the key to understanding fundamental processes at the deep roots of faults, and could signal times of accelerated slip and hence increased seismic hazard. The mechanism underlying the generation of tremor and its relationship to aseismic slip are, however, as yet unresolved. Here we demonstrate that tremor beneath Shikoku, Japan, can be explained as a swarm of small, low-frequency earthquakes, each of which occurs as shear faulting on the subduction-zone plate interface. This suggests that tremor and slow slip are different manifestations of a single process.


Science | 2011

Shallow Dynamic Overshoot and Energetic Deep Rupture in the 2011 Mw 9.0 Tohoku-Oki Earthquake

Satoshi Ide; Annemarie S. Baltay; Gregory C. Beroza

Detailed geophysical measurements reveal features of the 2011 Tohoku-Oki megathrust earthquake. Strong spatial variation of rupture characteristics in the moment magnitude (Mw) 9.0 Tohoku-Oki megathrust earthquake controlled both the strength of shaking and the size of the tsunami that followed. Finite-source imaging reveals that the rupture consisted of a small initial phase, deep rupture for up to 40 seconds, extensive shallow rupture at 60 to 70 seconds, and continuing deep rupture lasting more than 100 seconds. A combination of a shallow dipping fault and a compliant hanging wall may have enabled large shallow slip near the trench. Normal faulting aftershocks in the area of high slip suggest dynamic overshoot on the fault. Despite prodigious total slip, shallower parts of the rupture weakly radiated at high frequencies, whereas deeper parts of the rupture radiated strongly at high frequencies.


Nature | 2007

A scaling law for slow earthquakes.

Satoshi Ide; Gregory C. Beroza; David R. Shelly; Takahiko Uchide

Recently, a series of unusual earthquake phenomena have been discovered, including deep episodic tremor, low-frequency earthquakes, very-low-frequency earthquakes, slow slip events and silent earthquakes. Each of these has been demonstrated to arise from shear slip, just as do regular earthquakes, but with longer characteristic durations and radiating much less seismic energy. Here we show that these slow events follow a simple, unified scaling relationship that clearly differentiates their behaviour from that of regular earthquakes. We find that their seismic moment is proportional to the characteristic duration and their moment rate function is constant, with a spectral high-frequency decay of f-1. This scaling and spectral behaviour demonstrates that they can be thought of as different manifestations of the same phenomena and that they comprise a new earthquake category. The observed scale dependence of rupture velocity for these events can be explained by either a constant low-stress drop model or a diffusional constant-slip model. This new scaling law unifies a diverse class of slow seismic events and may lead to a better understanding of the plate subduction process and large earthquake generation.


Journal of Geophysical Research | 2002

A spatial random field model to characterize complexity in earthquake slip

P. Martin Mai; Gregory C. Beroza

[1] Finite-fault source inversions reveal the spatial complexity of earthquake slip over the fault plane. We develop a stochastic characterization of earthquake slip complexity, based on published finite-source rupture models, in which we model the distribution of slip as a spatial random field. The model most consistent with the data follows a von Karman autocorrelation function (ACF) for which the correlation lengths a increase with source dimension. For earthquakes with large fault aspect ratios, we observe substantial differences of the correlation length in the along-strike (a x ) and downdip (a z ) directions. Increasing correlation length with increasing magnitude can be understood using concepts of dynamic rupture propagation. The power spectrum of the slip distribution can also be well described with a power law decay (i.e., a fractal distribution) in which the fractal dimension D remains scale invariant, with a median value D = 2.29 ±0.23, while the comer wave number k c , which is inversely proportional to source size, decreases with earthquake magnitude, accounting for larger slip patches for large-magnitude events. Our stochastic slip model can be used to generate realizations of scenario earthquakes for near-source ground motion simulations.


Geophysical Research Letters | 2001

Does apparent stress vary with earthquake size

Satoshi Ide; Gregory C. Beroza

Seismic energy is distributed across a wide fre- quency band so that limited bandwidth recording can lead tosubstantialunderestimates oftheradiatedseismic energy or introduce an articial upper bound of radiated energy. We estimate an adjustment factor to account for the proba- ble missing energy and apply it to three previously studied data sets with limited recording bandwidth. We nd that thisadjustment,togetherwithaccountingforpossibly miss- ing events, eliminates much of the moment dependence of radiated energy found previously. We obtain a nearly con- stant ratio of radiated energy to seismic moment, 310 5 , or 1 MPa of apparent stress drop, over 17 orders of seismic moment. This suggests that deviation from similarity of the energy radiation for seismic events essentially the entire observablerangeofearthquakesizemaynotyetberesolved.


Science | 1995

Seismic Evidence for an Earthquake Nucleation Phase

William L. Ellsworth; Gregory C. Beroza

Near-source observations show that earthquakes initiate with a distinctive seismic nucleation phase that is characterized by a low rate of moment release relative to the rest of the event. This phase was observed for the 30 earthquakes having moment magnitudes 2.6 to 8.1, and the size and duration of this phase scale with the eventual size of the earthquake. During the nucleation phase, moment release was irregular and appears to have been confined to a limited region of the fault. It was characteristically followed by quadratic growth in the moment rate as rupture began to propagate away from the nucleation zone. These observations suggest that the nucleation process exerts a strong influence on the size of the eventual earthquake.


Bulletin of the Seismological Society of America | 2000

Source Scaling Properties from Finite-Fault-Rupture Models

P. Martin Mai; Gregory C. Beroza

Finite-source images of earthquake rupture show that fault slip is spatially variable at all resolvable scales. In this study we develop scaling laws that account for this variability by measuring effective fault dimensions derived from the autocorrelation of the slip function for 31 published slip models of 18 earthquakes, 8 strike-slip events, and 10 dip-slip (reverse, normal, or oblique) events. We find that dip-slip events show self-similar scaling, but that scale invariance appears to break down for large strike-slip events for which slip increases with increasing fault length despite the saturation of rupture width. Combining our data with measurements from other studies, we find evidence for a nonlinear relationship between average displacement and fault length, in which displacement increases with fault length at a decreasing rate for large strike-slip events. This observation is inconsistent with pure width or length scaling for simple constant stress-drop models, but suggests that the finite seismogenic width of the fault zone exerts a strong influence on the displacement for very large strike-slip earthquakes.


Geophysical Research Letters | 2009

Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones

J. R. Brown; Gregory C. Beroza; Satoshi Ide; Kazuaki Ohta; David R. Shelly; Susan Y. Schwartz; Wolfgang Rabbel; Martin Thorwart; Honn Kao

Deep tremor under Shikoku, Japan, consists primarily, and perhaps entirely, of swarms of low-frequency earthquakes (LFEs) that occur as shear slip on the plate interface. Although tremor is observed at other plate boundaries, the lack of cataloged low-frequency earthquakes has precluded a similar conclusion about tremor in those locales. We use a network autocorrelation approach to detect and locate LFEs within tremor recorded at three subduction zones characterized by different thermal structures and levels of interplate seismicity: southwest Japan, northern Cascadia, and Costa Rica. In each case we find that LFEs are the primary constituent of tremor and that they locate on the deep continuation of the plate boundary. This suggests that tremor in these regions shares a common mechanism and that temperature is not the primary control on such activity. Citation: Brown, J.R., G. C. Beroza, S. Ide, K. Ohta, D. R. Shelly, S. Y. Schwartz, W. Rabbel, M. Thorwart, and H. Kao (2009), Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones, Geophys. Res. Lett., 36, L19306, doi:10.1029/2009GL040027.

Collaboration


Dive into the Gregory C. Beroza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. Shelly

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Justin L. Rubinstein

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Annemarie S. Baltay

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas H. Jordan

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nori Nakata

University of Oklahoma

View shared research outputs
Researchain Logo
Decentralizing Knowledge