Gregory C. Rutledge
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregory C. Rutledge.
Science | 2007
Anish Tuteja; Wonjae Choi; Minglin Ma; Joseph M. Mabry; Sarah A. Mazzella; Gregory C. Rutledge; Gareth H. McKinley; Robert E. Cohen
Understanding the complementary roles of surface energy and roughness on natural nonwetting surfaces has led to the development of a number of biomimetic superhydrophobic surfaces, which exhibit apparent contact angles with water greater than 150 degrees and low contact angle hysteresis. However, superoleophobic surfaces—those that display contact angles greater than 150 degrees with organic liquids having appreciably lower surface tensions than that of water—are extremely rare. Calculations suggest that creating such a surface would require a surface energy lower than that of any known material. We show how a third factor, re-entrant surface curvature, in conjunction with chemical composition and roughened texture, can be used to design surfaces that display extreme resistance to wetting from a number of liquids with low surface tension, including alkanes such as decane and octane.
Polymer | 2001
Yongdae Shin; Moses M. Hohman; Michael P. Brenner; Gregory C. Rutledge
In the electrospinning process, polymer fibers with submicron-scale diameters are formed by subjecting a fluid jet to a high electric field. We report an experimental investigation of the electrically forced jet and its instabilities. The results are interpreted within the framework of a recently developed theory for electrified fluid jets. We find that the process can be described by a small set of operating parameters and summarized through the use of operating diagrams of electric field versus flow rate. In addition, the jet current is related to the net charge density and found to depend on the fluid properties, the applied electric field and the equipment configuration. The net charge density appears to be relatively insensitive to the flow rate, at least for high flow rates. The experiments reveal that a key process in the formation of submicron-scale solid fibers is a convective instability, the rapidly whipping jet. The dependence of this instability on electric field and flow rate, and the exponential nature of its growth rate are in accord with the theory.
Physics of Fluids | 2001
Moses M. Hohman; Michael Shin; Gregory C. Rutledge; Michael P. Brenner
Electrospinning is a process in which solid fibers are produced from a polymeric fluid stream (solution or melt) delivered through a millimeter-scale nozzle. The solid fibers are notable for their very small diameters (<1 μm). Recent experiments demonstrate that an essential mechanism of electrospinning is a rapidly whipping fluid jet. This series of papers analyzes the mechanics of this whipping jet by studying the instability of an electrically forced fluid jet with increasing field strength. An asymptotic approximation of the equations of electrohydrodynamics is developed so that quantitative comparisons with experiments can be carried out. The approximation governs both long wavelength axisymmetric distortions of the jet, as well as long wavelength oscillations of the centerline of the jet. Three different instabilities are identified: the classical (axisymmetric) Rayleigh instability, and electric field induced axisymmetric and whipping instabilities. At increasing field strengths, the electrical instabilities are enhanced whereas the Rayleigh instability is suppressed. Which instability dominates depends strongly on the surface charge density and radius of the jet. The physical mechanisms for the instability are discussed in the various possible limits.
Applied Physics Letters | 2001
Yongdae Shin; Moses M. Hohman; Michael P. Brenner; Gregory C. Rutledge
Polymeric fibers with diameters in the range from 50 nm to 5 μm are produced by accelerating a fluid jet in an electric field, in a process known as “electrospinning.” Here we show that an essential element of the process is a fluid instability, the rapidly whipping jet. The phenomena responsible for the onset of whipping are revealed by a linear instability analysis that describes the jet behavior in terms of known fluid properties and operating conditions. The behavior of two competing instabilities, the Rayleigh mode and the axisymmetric conducting mode, is also described. The results are summarized using operating diagrams, delineating regimes of operation in electrospinning, which are in good agreement with experimental observations.
Physics of Fluids | 2001
Moses M. Hohman; Michael Shin; Gregory C. Rutledge; Michael P. Brenner
Electrospinning is a process in which solid fibers are produced from a polymeric fluid stream (solution or melt) delivered through a millimeter-scale nozzle. This article uses the stability theory described in the previous article to develop a quantitative method for predicting when electrospinning occurs. First a method for calculating the shape and charge density of a steady jet as it thins from the nozzle is presented and is shown to capture quantitative features of the experiments. Then, this information is combined with the stability analysis to predict scaling laws for the jet behavior and to produce operating diagrams for when electrospinning occurs, both as a function of experimental parameters. Predictions for how the regime of electrospinning changes as a function of the fluid conductivity and viscosity are presented.
Biomaterials | 2010
Joseph L. Lowery; Néha Datta; Gregory C. Rutledge
Nonwoven fiber mats of poly(epsilon-caprolactone) (PCL) and PCL blended with poly(ethylene oxide) (PEO) were generated by electrospinning. Differential scanning calorimetry, scanning electron microscopy, and gravimetric measurement confirm the removal of PEO after immersion in water, as well as an increase in the PCL crystallinity. The reorganization of PCL resulted in the macroscopic alteration of the electrospun mat, decreasing the peak pore diameter up to a factor of 3 while only minimally affecting the fiber diameter. This technique was used to create electrospun PCL scaffolds with similar fiber diameters but different pore diameters to examine the effect of pore diameter on cell growth. Human Dermal Fibroblasts (HDF) were seeded into multiple samples using a perfusion seeding technique to guarantee successful cell deposition. Fluorescence analysis at 7, 14, and 21 days found that cells proliferated at a faster rate on scaffolds with peak pore diameters greater than 6 microm, as determined by mercury porosimetry. Cell conformation was also found to change as the peak pore diameter grew from 12 to 23 microm; cells began aligning along single fibers instead of attaching to multiple fibers. Knowledge of the effect of void architecture on cell proliferation and conformation could lead to the development of more effective scaffolds for tissue engineering.
Nature Materials | 2009
Kevin C. Krogman; Joseph L. Lowery; Nicole S. Zacharia; Gregory C. Rutledge; Paula T. Hammond
As engineers strive to mimic the form and function of naturally occurring materials with synthetic alternatives, the challenges and costs of processing often limit creative innovation. Here we describe a powerful yet economical technique for developing multiple coatings of different morphologies and functions within a single textile membrane, enabling scientists to engineer the properties of a material from the nanoscopic level in commercially viable quantities. By simply varying the flow rate of charged species passing through an electrospun material during spray-assisted layer-by-layer deposition, individual fibres within the matrix can be conformally functionalized for ultrahigh-surface-area catalysis, or bridged to form a networked sublayer with complimentary properties. Exemplified here by the creation of selectively reactive gas purification membranes, the myriad applications of this technology also include self-cleaning fabrics, water purification and protein functionalization of scaffolds for tissue engineering.
Journal of the American Chemical Society | 2010
Andrea Centrone; Ying Yang; Scott A. Speakman; Lev Bromberg; Gregory C. Rutledge; T. Alan Hatton
Polymer substrates have been functionalized with a MOF material (MIL-47) synthesized directly on polyacrylonitrile using in situ microwave irradiation. The growth of MIL-47 on these substrates was studied as a function of microwave irradiation time using scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The conversion of nitrile to carboxylic acid groups on the PAN surface was necessary for the growth of MIL-47 on the substrate. MIL-47 crystals grew over time at the expense of a related disordered precursor phase, which lacks the long-range order of MIL-47. This work paves the way for the development of a new class of hybrid MOF-polymer materials that will extend the applications of MOFs to fields such as membrane separations, filtration, and protective textiles.
Polymer | 2003
Marc S. Lavine; Numan Waheed; Gregory C. Rutledge
Abstract Molecular dynamics simulations of realistic, united atom models of polyethylene undergoing uniaxial extension are described. Systems composed of chains ranging from 25 to 400 carbons have been studied, under a variety of processing histories, including isothermal deformation at constant applied stress below the melt temperature Tm, isothermal deformation below Tm followed by annealing, isothermal deformation above Tm followed by crystallization at a quench temperature below Tm, and non-isothermal crystallization during simultaneous deformation and cooling through Tm. Extension and orientation of large segments of flexible chains by uniaxial deformation accelerates the primary nucleation rate to a time scale accessible by molecular dynamics simulation. Entanglements operative during active deformation promote extension and orientation without nucleation of a crystal phase, while relaxation of stress at constant strain is sufficient to allow slippage of chains past pinning points and rapid nucleation and growth of crystallites as neighboring oriented chains come into registry. Isothermal crystallization of pre-oriented systems shows an apparent increase in nucleation density at lower temperatures; the resulting ordered regions are smaller and more closely aligned in the direction of orientation. During non-isothermal deformation, where stretching and cooling occur simultaneously, a first order transition is observed, with discontinuities in the volume and global order parameter, when the system crystallizes.
Journal of the American Chemical Society | 2009
Wei Zhang; Johannes K. Sprafke; Minglin Ma; Emily Y. Tsui; Stefanie A. Sydlik; Gregory C. Rutledge; Timothy M. Swager
A series of highly efficient, modular zwitterion-mediated transformations have been developed which enable diverse functionalization of carbon nanotubes (CNTs, both single-walled and multi-walled) and fullerenes. Three functionalization strategies are demonstrated. (1) Trapping the charged zwitterion intermediate with added nucleophiles allows a variety of functional groups to be installed on the fullerenes and carbon nanotubes in a one-pot reaction. (2) Varying the electrophile from dimethyl acetylenedicarboxylate to other disubstituted esters provides CNTs functionalized with chloroethyl, allyl, and propargyl groups, which can further undergo S(N)2 substitution, thiol addition, or 1,3-dipolar cycloaddition reactions. (3) Postfunctionalization transformations on the cyclopentenones (e.g., demethylation and saponification) of the CNTs lead to demethylated or hydrolyzed products, with high solubility in water (1.2 mg/mL for MWCNTs). CNT aqueous dispersions of the latter derivatives are stable for months and have been successfully utilized in preparation of CNT-poly(ethylene oxide) nanocomposite via electrospinning. Large-scale MWCNT (10 g) functionalization has also been demonstrated to show the scalability of the zwitterion reaction. In total we present a detailed account of diverse CNT functionalization under mild conditions (60 degrees C, no strong acids/bases, or high pressure) and with high efficiency (1 functional group per 10 carbon atoms for SWCNTs), which expand the utility of these materials.