Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory C. Smith is active.

Publication


Featured researches published by Gregory C. Smith.


Philosophical Transactions of the Royal Society A | 2009

Modelling the global coastal ocean

Jason T. Holt; James Harle; Roger Proctor; Sylvain Michel; Mike Ashworth; Crispian Batstone; Icarus Allen; Robert Holmes; Timothy J. Smyth; Keith Haines; Daniel Bretherton; Gregory C. Smith

Shelf and coastal seas are regions of exceptionally high biological productivity, high rates of biogeochemical cycling and immense socio-economic importance. They are, however, poorly represented by the present generation of Earth system models, both in terms of resolution and process representation. Hence, these models cannot be used to elucidate the role of the coastal ocean in global biogeochemical cycles and the effects global change (both direct anthropogenic and climatic) are having on them. Here, we present a system for simulating all the coastal regions around the world (the Global Coastal Ocean Modelling System) in a systematic and practical fashion. It is based on automatically generating multiple nested model domains, using the Proudman Oceanographic Laboratory Coastal Ocean Modelling System coupled to the European Regional Seas Ecosystem Model. Preliminary results from the system are presented. These demonstrate the viability of the concept, and we discuss the prospects for using the system to explore key areas of global change in shelf seas, such as their role in the carbon cycle and climate change effects on fisheries.


Geophysical Research Letters | 2007

Historical reconstruction of the Atlantic Meridional Overturning Circulation from the ECMWF operational ocean reanalysis

Magdalena A. Balmaseda; Gregory C. Smith; Keith Haines; David L. T. Anderson; T. N. Palmer; Arthur Vidard

A reconstruction of the Atlantic Meridional Overturning Circulation (MOC) for theperiod 1959-2006 has been derived from the ECMWF operational ocean reanalysis. The reconstruction shows a wide range of time-variability, including a downward trend. At 26N, both the MOC intensity and changes in its vertical structure are in good agreement with previous estimates based on trans-Atlantic surveys. At 50N, the MOC and strength of the subpolar gyre are correlated at interannual time scales, but show opposite secular trends. Heat transport variability is highly correlated with the MOC but shows a smaller trend due to the warming of the upper ocean, which partially compensates for the weakening of the circulation. Results from sensitivity experiments show that although the time-varying upper boundary forcing provides useful MOC information, the sequential assimilation of ocean data further improves the MOC estimation by increasing both the mean and the time variability.


Bulletin of the American Meteorological Society | 2016

Advancing Polar Prediction Capabilities on Daily to Seasonal Time Scales

Thomas Jung; Neil Gordon; Peter Bauer; David H. Bromwich; Matthieu Chevallier; Jonathan J. Day; Jackie Dawson; Francisco J. Doblas-Reyes; Christopher W. Fairall; Helge Goessling; Marika M. Holland; Jun Inoue; Trond Iversen; Stefanie Klebe; Peter Lemke; Martin Losch; Alexander Makshtas; Brian Mills; Pertti Nurmi; Donald K. Perovich; P Reid; Ian A. Renfrew; Gregory C. Smith; Gunilla Svensson; Mikhail Tolstykh; Qinghua Yang

AbstractThe polar regions have been attracting more and more attention in recent years, fueled by the perceptible impacts of anthropogenic climate change. Polar climate change provides new opportunities, such as shorter shipping routes between Europe and East Asia, but also new risks such as the potential for industrial accidents or emergencies in ice-covered seas. Here, it is argued that environmental prediction systems for the polar regions are less developed than elsewhere. There are many reasons for this situation, including the polar regions being (historically) lower priority, with fewer in situ observations, and with numerous local physical processes that are less well represented by models. By contrasting the relative importance of different physical processes in polar and lower latitudes, the need for a dedicated polar prediction effort is illustrated. Research priorities are identified that will help to advance environmental polar prediction capabilities. Examples include an improvement of the p...


Journal of Operational Oceanography | 2015

Assessing the impact of observations on ocean forecasts and reanalyses: Part 1, Global studies

Peter R. Oke; Gilles Larnicol; Yosuke Fujii; Gregory C. Smith; D. J. Lea; S. Guinehut; Elisabeth Remy; M. Alonso Balmaseda; Tatiana Rykova; D. Surcel-Colan; Matthew Martin; Alistair Sellar; S. Mulet; V. Turpin

Under GODAE OceanView the operational ocean modelling community has developed a suite of global ocean forecast, reanalysis and analysis systems. Each system has a critical dependence on ocean observations – routinely assimilating observations of in-situ temperature and salinity, and satellite sea-level anomaly and sea surface temperature. This paper demonstrates the value and impact of ocean observations to three global eddy-permitting forecast systems, one global eddy-permitting model-independent analysis system, one eddy-resolving reanalysis system, and two seasonal prediction systems. All systems have been used to assess the impact of Argo profiles, including scenarios with no Argo data, and a degraded Argo array – unanimously concluding that Argo is a critical data set – the most critical for seasonal prediction, and as critical as satellite altimetry for eddy-permitting applications. Most systems show that TAO data are as important as Argo in the tropical Pacific, and that XBT data have an impact that is comparable to other data types in the vicinity of XBT transects. It is clear that no currently available data type is redundant. On the contrary, the components of the global ocean observing system complement each other remarkably well, providing sufficient information to monitor and forecast the global ocean.


Journal of Physical Oceanography | 2014

Role of Resolved and Parameterized Eddies in the Labrador Sea Balance of Heat and Buoyancy

Oleg A. Saenko; Frédéric Dupont; Duo Yang; Paul G. Myers; Igor Yashayaev; Gregory C. Smith

AbstractDeep convection in the Labrador Sea is an important component of the global ocean ventilation. The associated loss of heat to the atmosphere from the interior of the sea is thought to be mostly supplied by mesoscale eddies, generated either remotely or as a result of convection itself—processes that are not resolved by low-resolution ocean climate models. The authors first employ a high-resolution (°) ocean model forced with high-resolution (33 km, 3 h) atmospheric fields to further elaborate on the role of mesoscale eddies in maintaining the balance of heat and buoyancy in the Labrador Sea. In general agreement with previous studies, it is found that eddies remove heat along the coast and supply it to the interior. Some of the eddies that are generated because of the barotropic instability off the west coast of Greenland are recaptured by the boundary current. In the region of deep convection, the convergence of heat and buoyancy by eddies significantly increases with the deepening of the winter ...


Climate Dynamics | 2017

Intercomparison of the Arctic sea ice cover in global ocean–sea ice reanalyses from the ORA-IP project

Matthieu Chevallier; Gregory C. Smith; Frédéric Dupont; Jean-François Lemieux; Gael Forget; Yosuke Fujii; Fabrice Hernandez; Rym Msadek; K. Andrew Peterson; Andrea Storto; Takahiro Toyoda; Maria Valdivieso; Guillaume Vernieres; Hao Zuo; Magdalena A. Balmaseda; You-Soon Chang; Nicolas Ferry; Gilles Garric; Keith Haines; Sarah Keeley; Robin Kovach; Tsurane Kuragano; Simona Masina; Yongming Tang; Hiroyuki Tsujino; Xiaochun Wang

AbstractOcean–sea ice reanalyses are crucial for assessing the variability and recent trends in the Arctic sea ice cover. This is especially true for sea ice volume, as long-term and large scale sea ice thickness observations are inexistent. Results from the Ocean ReAnalyses Intercomparison Project (ORA-IP) are presented, with a focus on Arctic sea ice fields reconstructed by state-of-the-art global ocean reanalyses. Differences between the various reanalyses are explored in terms of the effects of data assimilation, model physics and atmospheric forcing on properties of the sea ice cover, including concentration, thickness, velocity and snow. Amongst the 14 reanalyses studied here, 9 assimilate sea ice concentration, and none assimilate sea ice thickness data. The comparison reveals an overall agreement in the reconstructed concentration fields, mainly because of the constraints in surface temperature imposed by direct assimilation of ocean observations, prescribed or assimilated atmospheric forcing and assimilation of sea ice concentration. However, some spread still exists amongst the reanalyses, due to a variety of factors. In particular, a large spread in sea ice thickness is found within the ensemble of reanalyses, partially caused by the biases inherited from their sea ice model components. Biases are also affected by the assimilation of sea ice concentration and the treatment of sea ice thickness in the data assimilation process. An important outcome of this study is that the spatial distribution of ice volume varies widely between products, with no reanalysis standing out as clearly superior as compared to altimetry estimates. The ice thickness from systems without assimilation of sea ice concentration is not worse than that from systems constrained with sea ice observations. An evaluation of the sea ice velocity fields reveals that ice drifts too fast in most systems. As an ensemble, the ORA-IP reanalyses capture trends in Arctic sea ice area and extent relatively well. However, the ensemble can not be used to get a robust estimate of recent trends in the Arctic sea ice volume. Biases in the reanalyses certainly impact the simulated air–sea fluxes in the polar regions, and questions the suitability of current sea ice reanalyses to initialize seasonal forecasts.


Journal of Operational Oceanography | 2015

GODAE OceanView Class 4 forecast verification framework: global ocean inter-comparison

A.G. Ryan; Charly Regnier; P. Divakaran; Todd Spindler; Avichal Mehra; Gregory C. Smith; Fraser Davidson; Fabrice Hernandez; J. Maksymczuk; Y. Liu

As part of the work of the GODAE OceanView Inter-comparison and Validation Task Team (IV-TT), 6 global ocean forecasting systems spread across 5 operational oceanography forecast centres were inter-compared using a common set of observations as a proxy for the truth. The ‘Class 4’ in the title refers to a set of forecast verification metrics defined in the MERSEA-IP/GODAE internal metrics document (Hernandez 2007), the defining feature of which is that comparisons between forecasts and observations take place in observation space. This approach is seen as a departure from other diagnostic approaches such as analysing model trends or innovation statistics, and is commonly used in the atmospheric community. The physical parameters involved in the comparison are sea surface temperature (SST), sub-surface temperature, sub-surface salinity and sea level anomaly (SLA). SST was measured using in-situ observations obtained from USGODAE, sub-surface conditions were compared to Argo profiles, while sea level anomaly was measured by several satellite altimeters courtesy of AVISO. The 5 forecast centres involved in the project were Met Office, Australian Bureau of Meteorology, Mercator Océan, Environment Canada and NOAA/NWS/NCEP. Combining Met Office, Mercator Océan and Environment Canada forecasts into a mixed resolution multi-model ensemble produces estimates of the ocean state which have better accuracy and associativity properties for SST, SLA and temperature profiles than any individual ensemble component.


Journal of Operational Oceanography | 2015

Status and future of data assimilation in operational oceanography

Matthew Martin; Magdalena A. Balmaseda; Laurent Bertino; Pierre Brasseur; Gary B. Brassington; James Cummings; Yosuke Fujii; D. J. Lea; J.-M. Lellouche; Kristian Mogensen; Peter R. Oke; Gregory C. Smith; C.-E. Testut; G.A. Waagbø; J. Waters; A.T. Weaver

The GODAE OceanView systems use various data assimilation algorithms, including 3DVar, EnOI, EnKF and the SEEK filter with a fixed basis, using different time windows. The main outputs of the operational data assimilation systems, the increments, have been compared for February 2014 in various regions. The eddy-permitting systems’ increments are similar in a number of the regions, indicating similar forecast errors are being corrected, while the eddy-resolving systems represent smaller-scale structures in the mid-latitude regions investigated and appear to have smaller biases. Monthly average temperature increments show significant SST biases, particularly in the systems which assimilate swath satellite SST data, indicating systematic errors in the surface heat fluxes and the way in which they are propagated vertically by the ocean models. On-going developments to the data assimilation systems include improvements to the specification of error covariances, improving assimilation of data near the equator, and understanding the effect of assimilation on the Atlantic Meridional Overturning Circulation. Longer term developments are expected to include the implementation of more advanced algorithms to make use of flow-dependent error covariance information. Assimilation of new data sources over the coming years, such as wide-swath altimetry, is also expected to improve the accuracy of ocean state estimates and forecasts provided by the GODAE OceanView systems.


Journal of Geophysical Research | 2015

A basal stress parameterization for modeling landfast ice

Jean-François Lemieux; L. Bruno Tremblay; Frédéric Dupont; Mathieu Plante; Gregory C. Smith; Dany Dumont

Current large-scale sea ice models represent very crudely or are unable to simulate the formation, maintenance and decay of coastal landfast ice. We present a simple landfast ice parameterization representing the effect of grounded ice keels. This parameterization is based on bathymetry data and the mean ice thickness in a grid cell. It is easy to implement and can be used for two-thickness and multithickness category models. Two free parameters are used to determine the critical thickness required for large ice keels to reach the bottom and to calculate the basal stress associated with the weight of the ridge above hydrostatic balance. A sensitivity study was conducted and demonstrates that the parameter associated with the critical thickness has the largest influence on the simulated landfast ice area. A 6 year (2001–2007) simulation with a 20 km resolution sea ice model was performed. The simulated landfast ice areas for regions off the coast of Siberia and for the Beaufort Sea were calculated and compared with data from the National Ice Center. With optimal parameters, the basal stress parameterization leads to a slightly shorter landfast ice season but overall provides a realistic seasonal cycle of the landfast ice area in the East Siberian, Laptev and Beaufort Seas. However, in the Kara Sea, where ice arches between islands are key to the stability of the landfast ice, the parameterization consistently leads to an underestimation of the landfast area.


Journal of Operational Oceanography | 2015

Recent progress in performance evaluations and near real-time assessment of operational ocean products

Fabrice Hernandez; Edward W. Blockley; Gary B. Brassington; Fraser Davidson; P. Divakaran; Marie Drevillon; Shiro Ishizaki; Marcos Garcia-Sotillo; Patrick J. Hogan; Priidik Lagemaa; Bruno Levier; Matthew Martin; Avichal Mehra; Christopher Mooers; Nicolas Ferry; Andrew Ryan; Charly Regnier; Alistair Sellar; Gregory C. Smith; S. Sofianos; Todd Spindler; Gianluca Volpe; John Wilkin; Edward D. Zaron; Aijun Zhang

Operational ocean forecast systems provide routine marine products to an ever-widening community of users and stakeholders. The majority of users need information about the quality and reliability of the products to exploit them fully. Hence, forecast centres have been developing improved methods for evaluating and communicating the quality of their products. Global Ocean Data Assimilation Experiment (GODAE) OceanView, along with the Copernicus European Marine Core Service and other national and international programmes, has facilitated the development of coordinated validation activities among these centres. New metrics, assessing a wider range of ocean parameters, have been defined and implemented in real-time. An overview of recent progress and emerging international standards is presented here.

Collaboration


Dive into the Gregory C. Smith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fraser Davidson

Fisheries and Oceans Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabrice Hernandez

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Yosuke Fujii

Japan Meteorological Agency

View shared research outputs
Top Co-Authors

Avatar

Youyu Lu

Bedford Institute of Oceanography

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge