Gregory Chatel
University of Alabama
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregory Chatel.
Green Chemistry | 2014
Gregory Chatel; Jorge Fernando Brandão Pereira; Varun Debbeti; Hui Wang; Robin D. Rogers
In the third issue of the then new journal Green Chemistry (2001, 3, 156–164), we published our first paper describing the physical properties of a few hydrophilic and hydrophobic ionic liquids (ILs) representing one of the first such studies to be published. To help celebrate the 15th anniversary of the Journal, we revisit the ‘design’ aspect of ILs by reviewing the growing area of what most are calling ‘ionic liquid mixtures’. In 2001, designing IL properties meant essentially independent variation or synthesis of the cations and anions and determining what physical or chemical properties these liquid salts possessed. Recently, however, the mixing of ILs has been proposed and investigated as a way to add increased scope to the accessible properties of IL media. In this review, we question whether the same thinking and approach used for organic solvent mixtures should be applied to ILs simply because of the way they were made. Unlike organic solvent mixtures, IL compositions of varied ions, do not retain their individual nature, need not be made by simple mixing of two-ion salts, and preferential interactions of a given cation for a given anion are possible in these 3-ion, 4-ion, or higher order liquids. When two ILs are mixed together, one cant identify which ion is from which IL, and the chemistry is simply not based on the identity of the individual ILs, but on the ions comprising them and the interactions of each individual ion, independently of the counterion. Thus, we ask if it would not be better to consider these as unique ion combinations whose solvent properties are derived from the specific choice and abundance of each ion in the system. Through this review of the available literature, we support the concept of Double Salt Ionic Liquids (DSILs) and discuss the interactions involved in these systems, by examining their physicochemical properties and the novel applications they offer.
Journal of Hazardous Materials | 2012
Sylvie Viboud; Nicolas Papaiconomou; Aurélien Cortesi; Gregory Chatel; Micheline Draye; Dominique Fontvieille
A systematic screening of the toxicity of ionic liquids (IL) towards Vibrio fischeri, a bioluminescent marine bacteria generally used in ecotoxicological bioassays, was carried out. The objectives of this work were to find hydrophilic or hydrophobic low toxicity IL and to investigate structure-toxicity relationship of IL. Toxicity of 54 IL to V. fischeri have been measured, some referring to new IL based on quinuclidinol or tropinol and some to generic IL (i.e., imidazolium, pyridinium, pyrrolidinium or piperidinium). For 47 of them, toxicity values have not been reported elsewhere. Water-soluble IL containing hydrophilic anions halide, thiocyanate, dicyanamide, trifluoromethansulfonate were studied. Some IL were found to exhibit very low toxicity towards V. fisheri. Hydrophobic IL based on bis(trifluoromethanesulfonyl)imide, tetrafluoroborate tetraphenylborate and tetracyanoborate were also studied. Toxicity was measured in a consistent way starting from aqueous solutions saturated with IL. The least toxic hydrophobic IL found in this study was [EMIM][B(CN)(4)]. A multifactorial analysis was found to be convenient for finding relevant structure parameters influencing the toxicity of IL. From this analysis, the planarity of the cation ring appeared to be a relevant parameter. Finally, good linear correlations were found when toxicity of IL was plotted either against the number of aliphatic carbons surrounding a pyridinium cation or the total number of carbons of a cation.
Bioresource Technology | 2014
Fangchao Cheng; Hui Wang; Gregory Chatel; Gabriela Gurau; Robin D. Rogers
Treating ground bagasse or Southern yellow pine in the biodegradable ionic liquid (IL), choline acetate ([Cho][OAc]), at 100°C for 24h led to dissolution of hemicellulose and lignin, while leaving the cellulose pulp undissolved, with a 54.3% (bagasse) or 34.3% (pine) reduction in lignin content. The IL solution of the dissolved biopolymers can be separated from the undissolved particles either by addition of water (20 wt% of IL) followed by filtration or by centrifugation. Hemicellulose (19.0 wt% of original bagasse, 10.2 wt% of original pine, containing 14-18 wt% lignin) and lignin (5.0 wt% of original bagasse, 6.0 wt% of original pine) could be subsequently precipitated. The pulp obtained from [Cho][OAc] treatment can be rapidly dissolved in 1-ethyl-3-methylimidazolium acetate (e.g., 17 h for raw bagasse vs. 7h for pulp), and precipitated as cellulose-rich material (CRM) with a lower lignin content (e.g., 23.6% for raw bagasse vs. 10.6% for CRM).
Ultrasonics Sonochemistry | 2012
Gregory Chatel; Catherine Goux-Henry; Nathalie Kardos; Joël Suptil; Bruno Andrioletti; Micheline Draye
In this proof of concept study, the advantageous properties of both H(2)O(2)/NaHCO(3)/imidazole/Mn(TPP)OAc oxidation system and MOPyrroNTf(2) ionic liquid have been combined under ultrasonic irradiation to give an exceptionally favorable environment for Mn(TPP)OAc catalyzed olefin oxidations. The results reveal the crucial role played by the ultrasonic irradiations that influence drastically the oxidation process. In MOPyrroNTf(2) and under ultrasonic irradiation, the mechanism probably involves an oxo-manganyl intermediate at the expense of the classical bicarbonate-activated peroxide route.
ChemPhysChem | 2015
Hui Wang; Steven P. Kelley; Jimmy W. Brantley; Gregory Chatel; Julia L. Shamshina; Jorge Fernando Brandão Pereira; Varun Debbeti; Allan S. Myerson; Robin D. Rogers
Liquid multi-ion systems made by combining two or more salts can exhibit charge ordering and interactions not found in the parent salts, leading to new sets of properties. This is investigated herein by examining a liquid comprised of a single cation, 1-ethyl-3-methylimidazolium ([C2mim](+)), and two anions with different properties, acetate ([OAc](-)) and bis(trifluoromethylsulfonyl)imide ([NTf2](-)). NMR and IR spectroscopy indicate that the electrostatic interactions are quite different from those in either [C2mim][OAc] or [C2mim][NTf2]. This is attributed to the ability of [OAc](-) to form complexes with the [C2mim](+) ions at greater than 1:1 stoichiometries by drawing [C2mim](+) ions away from the less basic [NTf2](-) ions. Solubility studies with molecular solvents (ethyl acetate, water) and pharmaceuticals (ibuprofen, diphenhydramine) show nonlinear trends as a function of ion content, which suggests that solubility can be tuned through changes in the ionic compositions.
Journal of Hazardous Materials | 2017
Gregory Chatel; Emmanuel Naffrechoux; Micheline Draye
Based on our original knowledge and experience on both polychlorinated biphenyls (PCBs) identification in aquatic ecosystems, and use of ionic liquids (ILs) as solvents and/or co-catalysts in green chemistry, we drawn a dared comparison between these two families. Indeed, PCBs has been used during several decades for their new properties, but are now considered as prevalent and persistent pollutants; some toxic effects on environment or human are still revealed. ILs, often designated as green solvents are increasingly used in numerous applications, but few studies reported about their environmental impact are still controversial. Through a parallel between properties and applications of PCBs and ILs, we wondered if history could not repeat itself, and how to provide a better future for ILs. Here, we provide some interesting comparisons and we discuss which tracks it could be important to follow for ILs applications in order to avoid the errors done with PCBs.
Ultrasonics Sonochemistry | 2018
Gregory Chatel
Based on the analyses of papers from the literature, and especially those published in Ultrasonics Sonochemistry journal, the contribution of sonochemistry to green chemistry area has been discussed here. Important reminders and insights on the good practices and considerations have been made to understand and demonstrate how sonochemistry can continue to efficiently contribute to green chemistry area in the further studies.
Green Chemistry | 2017
Luis Carlos de la Garza; Karine De Oliveira Vigier; Gregory Chatel; Audrey Moores
A novel amphiphilic dipyridinium peroxophosphotungstate ion pair was developed as a selective and recyclable catalyst for the triphasic epoxidation of fatty acids and esters with hydrogen peroxide. The synthesis of the catalyst was studied extensively by solid and liquid phase 31P nuclear magnetic resonance (NMR). The oxidation of vegetable oils is of prime importance for the production of lubricants, plasticizers, polymer stabilizers and other olefinic compounds. Based on the oxidizing activity of peroxophosphotungstates, we designed a lipophilic phase transfer agent that renders the active complex insoluble in the reaction media, without having to support it on a matrix. This affords a catalyst combining the activity of homogeneous catalysts and the recyclability of heterogeneous systems. We show that this catalyst is able to fully epoxidize methyl oleate with excellent selectivity, with a turnover frequency of 149 at 60 °C, and can be easily recycled, to reach a record turn over number of 1868. A larger scale experiment on 13 grams and a scope including linoleic and ricinoleic acids were also demonstrated. The catalyst also shows excellent activity and selectivity for the oxidative cleavage of methyl oleate and the oxidation of small olefins.
ACS Sustainable Chemistry & Engineering | 2014
Gregory Chatel; Robin D. Rogers
Energy & Fuels | 2014
Parker D. McCrary; Gregory Chatel; Spencer A. Alaniz; O. Andreea Cojocaru; Preston A. Beasley; Luis A. Flores; Steven P. Kelley; Patrick S. Barber; Robin D. Rogers