Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory D. Clemenson is active.

Publication


Featured researches published by Gregory D. Clemenson.


Science | 2009

A Functional Role for Adult Hippocampal Neurogenesis in Spatial Pattern Separation

C.D. Clelland; M.L. Choi; Carola Romberg; Gregory D. Clemenson; A. Fragniere; P. Tyers; Sebastian Jessberger; Lisa M. Saksida; Roger A. Barker; Fred H. Gage; Timothy J. Bussey

Neurogenesis and Spatial Memory The dentate gyrus of the hippocampus is one of two sites in the brain where new neurons are produced throughout life. Adult-born neurons integrate into the dentate gyrus circuitry and are thought to play a role in learning and memory. However, their contribution to hippocampal function remains unclear. Clelland et al. (p. 210) disrupted neurogenesis in mice and used two behavioral tasks to test for impairment in the formation of uncorrelated episodic memory representations. In one task, two arms were presented and the mice were rewarded for choosing the most recently visited arm in an earlier sequence; in the second task, animals were rewarded for choosing a certain location on a touch screen. Ablation of neurogenesis affected discrimination performance in both tasks but only when the arms or screen locations were close to one another. Neurogenesis is thus necessary for spatial pattern separation in the dentate gyrus. Disruption of neurogenesis in a neuron-forming site in the brain impairs spatial memory functions in mice. The dentate gyrus (DG) of the mammalian hippocampus is hypothesized to mediate pattern separation—the formation of distinct and orthogonal representations of mnemonic information—and also undergoes neurogenesis throughout life. How neurogenesis contributes to hippocampal function is largely unknown. Using adult mice in which hippocampal neurogenesis was ablated, we found specific impairments in spatial discrimination with two behavioral assays: (i) a spatial navigation radial arm maze task and (ii) a spatial, but non-navigable, task in the mouse touch screen. Mice with ablated neurogenesis were impaired when stimuli were presented with little spatial separation, but not when stimuli were more widely separated in space. Thus, newborn neurons may be necessary for normal pattern separation function in the DG of adult mice.


Learning & Memory | 2009

Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats

Sebastian Jessberger; Robert E. Clark; Nicola J. Broadbent; Gregory D. Clemenson; Antonella Consiglio; D. Chichung Lie; Larry R. Squire; Fred H. Gage

New granule cells are born throughout life in the dentate gyrus of the hippocampal formation. Given the fundamental role of the hippocampus in processes underlying certain forms of learning and memory, it has been speculated that newborn granule cells contribute to cognition. However, previous strategies aiming to causally link newborn neurons with hippocampal function used ablation strategies that were not exclusive to the hippocampus or that were associated with substantial side effects, such as inflammation. We here used a lentiviral approach to specifically block neurogenesis in the dentate gyrus of adult male rats by inhibiting WNT signaling, which is critically involved in the generation of newborn neurons, using a dominant-negative WNT (dnWNT). We found a level-dependent effect of adult neurogenesis on the long-term retention of spatial memory in the water maze task, as rats with substantially reduced levels of newborn neurons showed less preference for the target zone in probe trials >2 wk after acquisition compared with control rats. Furthermore, animals with strongly reduced levels of neurogenesis were impaired in a hippocampus-dependent object recognition task. Social transmission of food preference, a behavioral test that also depends on hippocampal function, was not affected by knockdown of neurogenesis. Here we identified a role for newborn neurons in distinct aspects of hippocampal function that will set the ground to further elucidate, using experimental and computational strategies, the mechanism by which newborn neurons contribute to behavior.


The Journal of Neuroscience | 2007

Epigenetic Modulation of Seizure-Induced Neurogenesis and Cognitive Decline

Sebastian Jessberger; Kinichi Nakashima; Gregory D. Clemenson; Eunice Mejia; Emily Mathews; Kerstin Ure; Shiori Ogawa; Christopher M. Sinton; Fred H. Gage; Jenny Hsieh

The conceptual understanding of hippocampal function has been challenged recently by the finding that new granule cells are born throughout life in the mammalian dentate gyrus (DG). The number of newborn neurons is dynamically regulated by a variety of factors. Kainic acid-induced seizures, a rodent model of human temporal lobe epilepsy, strongly induce the proliferation of DG neurogenic progenitor cells and are also associated with long-term cognitive impairment. We show here that the antiepileptic drug valproic acid (VPA) potently blocked seizure-induced neurogenesis, an effect that appeared to be mainly mediated by inhibiting histone deacetylases (HDAC) and normalizing HDAC-dependent gene expression within the epileptic dentate area. Strikingly, the inhibition of aberrant neurogenesis protected the animals from seizure-induced cognitive impairment in a hippocampus-dependent learning task. We propose that seizure-generated granule cells have the potential to interfere with hippocampal function and contribute to cognitive impairment caused by epileptic activity within the hippocampal circuitry. Furthermore, our data indicate that the effectiveness of VPA as an antiepileptic drug may be partially explained by the HDAC-dependent inhibition of aberrant neurogenesis induced by seizure activity within the adult hippocampus.


The Journal of Neuroscience | 2007

Seizure-Associated, Aberrant Neurogenesis in Adult Rats Characterized with Retrovirus-Mediated Cell Labeling

Sebastian Jessberger; Chunmei Zhao; Nicolas Toni; Gregory D. Clemenson; Yan Li; Fred H. Gage

Seizure activity within the hippocampal circuitry not only affects pre-existing structures, but also dramatically increases the number of newborn granule cells. A retroviral strategy was used to label dividing cells and their progeny in the adult dentate gyrus and to analyze the impact of epileptic activity on adult-generated cells labeled before or after seizures. We show that epileptic activity led to dramatic changes in the neuronal polarity, migration, and integration pattern of newborn granule cells, depending on the time of birth in relation to the epileptic insult. Aberrant neurons were stably integrated into the dentate circuitry, and the consequences on hippocampal neurogenesis were long lasting. The data presented characterized the consequences of seizure-associated plasticity on adult neurogenesis leading to long-term structural changes in the hippocampal circuitry that might represent a pivotal component of the epileptic disease process.


Nature Neuroscience | 2008

Directed differentiation of hippocampal stem/progenitor cells in the adult brain

Sebastian Jessberger; Nicolas Toni; Gregory D. Clemenson; Jasodhara Ray; Fred H. Gage

Adult neurogenesis is a lifelong feature of brain plasticity; however, the potency of adult neural stem/progenitor cells in vivo remains unclear. We found that retrovirus-mediated overexpression of a single gene, the bHLH transcription factor Ascl1, redirected the fate of the proliferating adult hippocampal stem/progenitor (AHP) progeny and lead to the exclusive generation of cells of the oligodendrocytic lineage at the expense of newborn neurons, demonstrating that AHPs in the adult mouse brain are not irrevocably specified in vivo. These data indicate that AHPs have substantial plasticity, which might have important implications for the potential use of endogenous AHPs in neurological disease.


The Journal of Neuroscience | 2012

Gene Expression Profiling of Neural Stem Cells and Their Neuronal Progeny Reveals IGF2 as a Regulator of Adult Hippocampal Neurogenesis

Oliver Bracko; Tatjana Singer; Stefan Aigner; Marlen Knobloch; Beate Winner; Jasodhara Ray; Gregory D. Clemenson; Hoonkyo Suh; Sebastien Couillard-Despres; Ludwig Aigner; Fred H. Gage; Sebastian Jessberger

Neural stem cells (NSCs) generate neurons throughout life in the hippocampal dentate gyrus (DG). How gene expression signatures differ among NSCs and immature neurons remains largely unknown. We isolated NSCs and their progeny in the adult DG using transgenic mice expressing a GFP reporter under the control of the Sox2 promoter (labeling NSCs) and transgenic mice expressing a DsRed reporter under the control of the doublecortin (DCX) promoter (labeling immature neurons). Transcriptome analyses revealed distinct gene expression profiles between NSCs and immature neurons. Among the genes that were expressed at significantly higher levels in DG NSCs than in immature neurons was the growth factor insulin-like growth factor 2 (IGF2). We show that IGF2 selectively controls proliferation of DG NSCs in vitro and in vivo through AKT-dependent signaling. Thus, by gene expression profiling of NSCs and their progeny, we have identified IGF2 as a novel regulator of adult neurogenesis.


PLOS Biology | 2008

Cdk5 regulates accurate maturation of newborn granule cells in the adult hippocampus.

Sebastian Jessberger; Stefan Aigner; Gregory D. Clemenson; Nicolas Toni; D. Chichung Lie; Özlem Karalay; Rupert W. Overall; Gerd Kempermann; Fred H. Gage

Newborn granule cells become functionally integrated into the synaptic circuitry of the adult dentate gyrus after a morphological and electrophysiological maturation process. The molecular mechanisms by which immature neurons and the neurites extending from them find their appropriate position and target area remain largely unknown. Here we show that single-cell–specific knockdown of cyclin-dependent kinase 5 (cdk5) activity in newborn cells using a retrovirus-based strategy leads to aberrant growth of dendritic processes, which is associated with an altered migration pattern of newborn cells. Even though spine formation and maturation are reduced in cdk5-deficient cells, aberrant dendrites form ectopic synapses onto hilar neurons. These observations identify cdk5 to be critically involved in the maturation and dendrite extension of newborn neurons in the course of adult neurogenesis. The data presented here also suggest a mechanistic dissociation between accurate dendritic targeting and subsequent synapse formation.


Behavioural Brain Research | 2012

New neurons in an aged brain

Star W. Lee; Gregory D. Clemenson; Fred H. Gage

Adult hippocampal neurogenesis is one of the most robust forms of synaptic plasticity in the nervous system and occurs throughout life. However, the rate of neurogenesis declines dramatically with age. Older animals have significantly less neural progenitor cell proliferation, neuronal differentiation, and newborn neuron survival compared to younger animals. Intrinsic properties of neural progenitor cells, such as gene transcription and telomerase activity, change with age, which may contribute to the observed decline in neurogenesis. In addition, age-related changes in the local cells of the neurogenic niche may no longer provide neural progenitor cells with the cell-cell contact and soluble cues necessary for hippocampal neurogenesis. Astrocytes, microglia, and endothelial cells undergo changes in morphology and signaling properties with age, altering the foundation of the neurogenic niche. While most studies indicate a correlation between decreased hippocampal neurogenesis and impaired performance in hippocampus-dependent cognitive tasks in aged mice, a few have demonstrated that young and aged mice are equivalent in their cognitive ability. Here, we summarize the different behavioral paradigms to test hippocampus-dependent cognition and the need to develop neurogenesis-dependent tasks.


Nature Cell Biology | 2010

Puma is required for p53-induced depletion of adult stem cells

Dongping Liu; Linda Ou; Gregory D. Clemenson; Connie Chao; Marshall Eli Lutske; Gerard P. Zambetti; Fred H. Gage; Yang Xu

Mammalian ageing is accompanied by accumulation of genomic DNA damage and progressive decline in the ability of tissues to regenerate. DNA damage activates the tumour suppressor p53, which leads to cell-cycle arrest, senescence or apoptosis. The stability and activity of p53 are induced by DNA damage through posttranslational modifications such as phosphorylation of Thr 21 and Ser 23 (refs 2, 3, 4, 5). To investigate the roles of DNA damage and p53 in tissue-regenerative capability, two phosphorylation-site mutations (T21D and S23D) were introduced into the endogenous p53 gene in mice, so that the synthesized protein mimics phosphorylated p53. The knock-in mice exhibit constitutive p53 activation and segmental progeria that is correlated with the depletion of adult stem cells in multiple tissues, including bone marrow, brain and testes. Furthermore, a deficiency of Puma, which is required for p53-dependent apoptosis after DNA damage, rescues segmental progeria and prevents the depletion of adult stem cells. These findings suggest a key role of p53-dependent apoptosis in depleting adult stem cells after the accumulation of DNA damage, which leads to a decrease in tissue regeneration.


Cell Reports | 2013

BDNF in the Dentate Gyrus Is Required for Consolidation of “Pattern-Separated” Memories

Pedro Bekinschtein; Brianne A. Kent; Charlotte Oomen; Gregory D. Clemenson; Fred H. Gage; Lisa M. Saksida; Timothy J. Bussey

Summary Successful memory involves not only remembering information over time, but also keeping memories distinct and less confusable. The computational process for making representations for similar input patterns more distinct from each other has been referred to as “pattern separation.” In this work, we developed a set of behavioral conditions that allowed us to manipulate the load for pattern separation at different stages of memory. Thus, we provide experimental evidence that a brain-derived neurotrophic factor (BDNF)-dependent pattern separation process occurs during the encoding/storage/consolidation, but not the retrieval stage of memory processing. We also found that a spontaneous increase in BDNF in the dentate gyrus of the hippocampus is associated with exposure to landmarks delineating similar, but not dissimilar, spatial locations, suggesting that BDNF is expressed on an “as-needed” basis for pattern separation.

Collaboration


Dive into the Gregory D. Clemenson's collaboration.

Top Co-Authors

Avatar

Fred H. Gage

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Star W. Lee

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Lisa M. Saksida

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmet M. Denli

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Chunmei Zhao

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Jasodhara Ray

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Simon T. Schafer

Salk Institute for Biological Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge