Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory D. Edgecombe is active.

Publication


Featured researches published by Gregory D. Edgecombe.


Nature | 2008

Broad phylogenomic sampling improves resolution of the animal tree of life.

Casey W. Dunn; Andreas Hejnol; David Q. Matus; Kevin Pang; William E. Browne; Stephen A. Smith; Elaine C. Seaver; Greg W. Rouse; Matthias Obst; Gregory D. Edgecombe; Martin V. Sørensen; Steven H. D. Haddock; Andreas Schmidt-Rhaesa; Akiko Okusu; Reinhardt Møbjerg Kristensen; Ward C. Wheeler; Mark Q. Martindale; Gonzalo Giribet

Long-held ideas regarding the evolutionary relationships among animals have recently been upended by sometimes controversial hypotheses based largely on insights from molecular data. These new hypotheses include a clade of moulting animals (Ecdysozoa) and the close relationship of the lophophorates to molluscs and annelids (Lophotrochozoa). Many relationships remain disputed, including those that are required to polarize key features of character evolution, and support for deep nodes is often low. Phylogenomic approaches, which use data from many genes, have shown promise for resolving deep animal relationships, but are hindered by a lack of data from many important groups. Here we report a total of 39.9 Mb of expressed sequence tags from 29 animals belonging to 21 phyla, including 11 phyla previously lacking genomic or expressed-sequence-tag data. Analysed in combination with existing sequences, our data reinforce several previously identified clades that split deeply in the animal tree (including Protostomia, Ecdysozoa and Lophotrochozoa), unambiguously resolve multiple long-standing issues for which there was strong conflicting support in earlier studies with less data (such as velvet worms rather than tardigrades as the sister group of arthropods), and provide molecular support for the monophyly of molluscs, a group long recognized by morphologists. In addition, we find strong support for several new hypotheses. These include a clade that unites annelids (including sipunculans and echiurans) with nemerteans, phoronids and brachiopods, molluscs as sister to that assemblage, and the placement of ctenophores as the earliest diverging extant multicellular animals. A single origin of spiral cleavage (with subsequent losses) is inferred from well-supported nodes. Many relationships between a stable subset of taxa find strong support, and a diminishing number of lineages remain recalcitrant to placement on the tree.


Proceedings of the Royal Society of London B: Biological Sciences | 2009

Assessing the root of bilaterian animals with scalable phylogenomic methods

Andreas Hejnol; Matthias Obst; Alexandros Stamatakis; Michael Ott; G reg W. Rouse; Gregory D. Edgecombe; Xavier Bailly; Ulf Jondelius; Matthias Wiens; Elaine C. Seaver; Ward C. Wheeler; Mark Q. Martindale; Gonzalo Giribet; Casey W. Dunn

A clear picture of animal relationships is a prerequisite to understand how the morphological and ecological diversity of animals evolved over time. Among others, the placement of the acoelomorph flatworms, Acoela and Nemertodermatida, has fundamental implications for the origin and evolution of various animal organ systems. Their position, however, has been inconsistent in phylogenetic studies using one or several genes. Furthermore, Acoela has been among the least stable taxa in recent animal phylogenomic analyses, which simultaneously examine many genes from many species, while Nemertodermatida has not been sampled in any phylogenomic study. New sequence data are presented here from organisms targeted for their instability or lack of representation in prior analyses, and are analysed in combination with other publicly available data. We also designed new automated explicit methods for identifying and selecting common genes across different species, and developed highly optimized supercomputing tools to reconstruct relationships from gene sequences. The results of the work corroborate several recently established findings about animal relationships and provide new support for the placement of other groups. These new data and methods strongly uphold previous suggestions that Acoelomorpha is sister clade to all other bilaterian animals, find diminishing evidence for the placement of the enigmatic Xenoturbella within Deuterostomia, and place Cycliophora with Entoprocta and Ectoprocta. The work highlights the implications that these arrangements have for metazoan evolution and permits a clearer picture of ancestral morphologies and life histories in the deep past.


Nature | 2001

Arthropod phylogeny based on eight molecular loci and morphology.

Gonzalo Giribet; Gregory D. Edgecombe; Ward C. Wheeler

The interrelationships of major clades within the Arthropoda remain one of the most contentious issues in systematics, which has traditionally been the domain of morphologists. A growing body of DNA sequences and other types of molecular data has revitalized study of arthropod phylogeny and has inspired new considerations of character evolution. Novel hypotheses such as a crustacean–hexapod affinity were based on analyses of single or few genes and limited taxon sampling, but have received recent support from mitochondrial gene order, and eye and brain ultrastructure and neurogenesis. Here we assess relationships within Arthropoda based on a synthesis of all well sampled molecular loci together with a comprehensive data set of morphological, developmental, ultrastructural and gene-order characters. The molecular data include sequences of three nuclear ribosomal genes, three nuclear protein-coding genes, and two mitochondrial genes (one protein coding, one ribosomal). We devised new optimization procedures and constructed a parallel computer cluster with 256 central processing units to analyse molecular data on a scale not previously possible. The optimal ‘total evidence’ cladogram supports the crustacean–hexapod clade, recognizes pycnogonids as sister to other euarthropods, and indicates monophyly of Myriapoda and Mandibulata.


Cladistics | 2002

Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data.

Gonzalo Giribet; Gregory D. Edgecombe; Ward C. Wheeler; Courtney Babbitt

The ordinal level phylogeny of the Arachnida and the suprafamilial level phylogeny of the Opiliones were studied on the basis of a combined analysis of 253 morphological characters, the complete sequence of the 18S rRNA gene, and the D3 region of the 28S rRNA gene. Molecular data were collected for 63 terminal taxa. Morphological data were collected for 35 exemplar taxa of Opiliones, but groundplans were applied to some of the remaining chelicerate groups. Six extinct terminals, including Paleozoic scorpions, are scored for morphological characters. The data were analyzed using strict parsimony for the morphological data matrix and via direct optimization for the molecular and combined data matrices. A sensitivity analysis of 15 parameter sets was undertaken, and character congruence was used as the optimality criterion to choose among competing hypotheses. The results obtained are unstable for the high‐level chelicerate relationships (except for Tetrapulmonata, Pedipalpi, and Camarostomata), and the sister group of the Opiliones is not clearly established, although the monophyly of Dromopoda is supported under many parameter sets. However, the internal phylogeny of the Opiliones is robust to parameter choice and allows the discarding of previous hypotheses of opilionid phylogeny such as the “Cyphopalpatores” or “Palpatores.” The topology obtained is congruent with the previous hypothesis of “Palpatores” paraphyly as follows: (Cyphophthalmi (Eupnoi (Dyspnoi + Laniatores))). Resolution within the Eupnoi, Dyspnoi, and Laniatores (the latter two united as Dyspnolaniatores nov.) is also stable to the superfamily level, permitting a new classification system for the Opiliones.


Organisms Diversity & Evolution | 2011

Higher-level metazoan relationships: recent progress and remaining questions

Gregory D. Edgecombe; Gonzalo Giribet; Casey W. Dunn; Andreas Hejnol; Reinhardt Møbjerg Kristensen; Ricardo Cardoso Neves; Greg W. Rouse; Katrine Worsaae; Martin V. Sørensen

Metazoa comprises 35–40 phyla that include some 1.3 million described species. Phylogenetic analyses of metazoan interrelationships have progressed in the past two decades from those based on morphology and/or targeted-gene approaches using single and then multiple loci to the more recent phylogenomic approaches that use hundreds or thousands of genes from genome and transcriptome sequencing projects. A stable core of the tree for bilaterian animals is now at hand, and instability and conflict are becoming restricted to a key set of important but contentious relationships. Acoelomorph flatworms (Acoela + Nemertodermatida) and Xenoturbella are sister groups. The position of this clade remains controversial, with different analyses supporting either a sister-group relation to other bilaterians (=Nephrozoa, composed of Protostomia and Deuterostomia) or membership in Deuterostomia. The main clades of deuterostomes (Ambulacraria and Chordata) and protostomes (Ecdysozoa and Spiralia) are recovered in numerous analyses based on varied molecular samples, and also receive anatomical and developmental support. Outstanding issues in protostome phylogenetics are the position of Chaetognatha within the protostome clade, and the monophyly of a group of spiralians collectively named Platyzoa. In contrast to the broad consensus over key questions in bilaterian phylogeny, the relationships of the five main metazoan lineages—Porifera, Ctenophora, Placozoa, Cnidaria and Bilateria—remain subject to conflicting topologies according to different taxonomic samples and analytical approaches. Whether deep bilaterian divergences such as the split between protostome and deuterostome clades date to the Cryogenian or Ediacaran (and, thus, the extent to which the pre-Cambrian fossil record is incomplete) is sensitive to dating methodology.


Development Genes and Evolution | 2006

The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence.

Gerhard Scholtz; Gregory D. Edgecombe

Understanding the head is one of the great challenges in the fields of comparative anatomy, developmental biology, and palaeontology of arthropods. Numerous conflicting views and interpretations are based on an enormous variety of descriptive and experimental approaches. The interpretation of the head influences views on phylogenetic relationships within the Arthropoda as well as outgroup relationships. Here, we review current hypotheses about head segmentation and the nature of head structures from various perspectives, which we try to combine to gain a deeper understanding of the arthropod head. Though discussion about arthropod heads shows some progress, unquestioned concepts (e.g., a presegmental acron) are still a source of bias. Several interpretations are no longer tenable based on recent results from comparative molecular developmental studies, improved morphological investigations, and new fossils. Current data indicate that the anterior arthropod head comprises three elements: the protocerebral/ocular region, the deutocerebral/antennal/cheliceral segment, and the tritocerebral/pedipalpal/second antennal/intercalary segment. The labrum and the mouth are part of the protocerebral/ocular region. Whether the labrum derives from a former pair of limbs remains an open question, but a majority of data support its broad homology across the Euarthropoda. From the alignment of head segments between onychophorans and euarthropods, we develop the concept of “primary” and “secondary antennae” in Recent and fossil arthropods, posit that “primary antennae” are retained in some fossil euarthropods below the crown group level, and propose that Trilobita are stem lineage representatives of the Mandibulata.


PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES , 278 (1703) pp. 298-306. (2011) | 2011

A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata

Omar Rota-Stabelli; Lahcen I. Campbell; Henner Brinkmann; Gregory D. Edgecombe; Stuart J. Longhorn; Kevin J. Peterson; Davide Pisani; Hervé Philippe; Maximilian J. Telford

While a unique origin of the euarthropods is well established, relationships between the four euarthropod classes—chelicerates, myriapods, crustaceans and hexapods—are less clear. Unsolved questions include the position of myriapods, the monophyletic origin of chelicerates, and the validity of the close relationship of euarthropods to tardigrades and onychophorans. Morphology predicts that myriapods, insects and crustaceans form a monophyletic group, the Mandibulata, which has been contradicted by many molecular studies that support an alternative Myriochelata hypothesis (Myriapoda plus Chelicerata). Because of the conflicting insights from published molecular datasets, evidence from nuclear-coding genes needs corroboration from independent data to define the relationships among major nodes in the euarthropod tree. Here, we address this issue by analysing two independent molecular datasets: a phylogenomic dataset of 198 protein-coding genes including new sequences for myriapods, and novel microRNA complements sampled from all major arthropod lineages. Our phylogenomic analyses strongly support Mandibulata, and show that Myriochelata is a tree-reconstruction artefact caused by saturation and long-branch attraction. The analysis of the microRNA dataset corroborates the Mandibulata, showing that the microRNAs miR-965 and miR-282 are present and expressed in all mandibulate species sampled, but not in the chelicerates. Mandibulata is further supported by the phylogenetic analysis of a comprehensive morphological dataset covering living and fossil arthropods, and including recently proposed, putative apomorphies of Myriochelata. Our phylogenomic analyses also provide strong support for the inclusion of pycnogonids in a monophyletic Chelicerata, a paraphyletic Cycloneuralia, and a common origin of Arthropoda (tardigrades, onychophorans and arthropods), suggesting that previous phylogenies grouping tardigrades and nematodes may also have been subject to tree-reconstruction artefacts.


Proceedings of the National Academy of Sciences of the United States of America | 2011

MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda

Lahcen I. Campbell; Omar Rota-Stabelli; Gregory D. Edgecombe; Trevor Marchioro; Stuart J. Longhorn; Maximilian J. Telford; Hervé Philippe; Lorena Rebecchi; Kevin J. Peterson; Davide Pisani

Morphological data traditionally group Tardigrada (water bears), Onychophora (velvet worms), and Arthropoda (e.g., spiders, insects, and their allies) into a monophyletic group of invertebrates with walking appendages known as the Panarthropoda. However, molecular data generally do not support the inclusion of tardigrades within the Panarthropoda, but instead place them closer to Nematoda (roundworms). Here we present results from the analyses of two independent genomic datasets, expressed sequence tags (ESTs) and microRNAs (miRNAs), which congruently resolve the phylogenetic relationships of Tardigrada. Our EST analyses, based on 49,023 amino acid sites from 255 proteins, significantly support a monophyletic Panarthropoda including Tardigrada and suggest a sister group relationship between Arthropoda and Onychophora. Using careful experimental manipulations—comparisons of model fit, signal dissection, and taxonomic pruning—we show that support for a Tardigrada + Nematoda group derives from the phylogenetic artifact of long-branch attraction. Our small RNA libraries fully support our EST results; no miRNAs were found to link Tardigrada and Nematoda, whereas all panarthropods were found to share one unique miRNA (miR-276). In addition, Onychophora and Arthropoda were found to share a second miRNA (miR-305). Our study confirms the monophyly of the legged ecdysozoans, shows that past support for a Tardigrada + Nematoda group was due to long-branch attraction, and suggests that the velvet worms are the sister group to the arthropods.


Nature Communications | 2013

Arthropod fossil data increase congruence of morphological and molecular phylogenies

David A. Legg; Mark D. Sutton; Gregory D. Edgecombe

The relationships of major arthropod clades have long been contentious, but refinements in molecular phylogenetics underpin an emerging consensus. Nevertheless, molecular phylogenies have recovered topologies that morphological phylogenies have not, including the placement of hexapods within a paraphyletic Crustacea, and an alliance between myriapods and chelicerates. Here we show enhanced congruence between molecular and morphological phylogenies based on 753 morphological characters for 309 fossil and Recent panarthropods. We resolve hexapods within Crustacea, with remipedes as their closest extant relatives, and show that the traditionally close relationship between myriapods and hexapods is an artefact of convergent character acquisition during terrestrialisation. The inclusion of fossil morphology mitigates long-branch artefacts as exemplified by pycnogonids: when fossils are included, they resolve with euchelicerates rather than as a sister taxon to all other euarthropods.


Arthropod Structure & Development | 2010

Arthropod phylogeny: An overview from the perspectives of morphology, molecular data and the fossil record

Gregory D. Edgecombe

Monophyly of Arthropoda is emphatically supported from both morphological and molecular perspectives. Recent work finds Onychophora rather than Tardigrada to be the closest relatives of arthropods. The status of tardigrades as panarthropods (rather than cycloneuralians) is contentious from the perspective of phylogenomic data. A grade of Cambrian taxa in the arthropod stem group includes gilled lobopodians, dinocaridids (e.g., anomalocaridids), fuxianhuiids and canadaspidids that inform on character acquisition between Onychophora and the arthropod crown group. A sister group relationship between Crustacea (itself likely paraphyletic) and Hexapoda is retrieved by diverse kinds of molecular data and is well supported by neuroanatomy. This clade, Tetraconata, can be dated to the early Cambrian by crown group-type mandibles. The rival Atelocerata hypothesis (Myriapoda+Hexapoda) has no molecular support. The basal node in the arthropod crown group is embroiled in a controversy over whether myriapods unite with chelicerates (Paradoxopoda or Myriochelata) or with crustaceans and hexapods (Mandibulata). Both groups find some molecular and morphological support, though Mandibulata is presently the stronger morphological hypothesis. Either hypothesis forces an unsampled ghost lineage for Myriapoda from the Cambrian to the mid Silurian.

Collaboration


Dive into the Gregory D. Edgecombe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nesrine Akkari

Naturhistorisches Museum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoya Ma

Natural History Museum

View shared research outputs
Top Co-Authors

Avatar

Beatriz G. Waisfeld

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Norberto E. Vaccari

National University of Cordoba

View shared research outputs
Researchain Logo
Decentralizing Knowledge