Gregory D. Goodno
Grumman Aircraft Corporation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregory D. Goodno.
Optics Letters | 2009
Gregory D. Goodno; Lewis D. Book; Joshua E. Rothenberg
A chain of four Tm-doped fibers amplified a single-frequency, 2040 nm diode laser to 608 W with M(2)=1.05+/-0.03, limited by available pump power. Stimulated Brillouin scattering limits were investigated by splicing different lengths of passive fiber to the output of the final amplifier stage. Integrated rms phase noise above 1 kHz was less than lambda/30, suggesting the possibility of further scaling via coherent beam combining. To our knowledge, this is the highest power obtained from any single-frequency, single-mode fiber laser.
Optics Letters | 2006
Gregory D. Goodno; H. Komine; S. J. McNaught; S. B. Weiss; Shawn Redmond; W. Long; R. Simpson; Eric Cheung; D. Howland; P. Epp; Mark Weber; M. McClellan; J. Sollee; Hagop Injeyan
We demonstrate a scalable architecture for a high-power, high-brightness, solid-state laser based on coherent combinations of master oscillator power amplifier chains. A common master oscillator injects a sequence of multikilowatt Nd:YAG zigzag slab amplifiers. Adaptive optics correct the wavefront of each amplified beamlet. The beamlets are tiled side by side and actively phase locked to form a single output beam. The laser produces 19 kW with beam quality <2x diffraction limited. To the best of our knowledge, this is the brightest cw solid-state laser demonstrated to date.
Optics Letters | 2010
Gregory D. Goodno; Stuart J. McNaught; Joshua E. Rothenberg; Timothy S. McComb; Peter A. Thielen; Michael G. Wickham; Mark E. Weber
A three-stage Yb-fiber amplifier emitted 1.43 kW of single-mode power when seeded with a 25 GHz linewidth master oscillator (MO). The amplified output was polarization stabilized and phase locked using active heterodyne phase control. A low-power sample of the output beam was coherently combined to a second fiber amplifier with 90% visibility. The measured combining efficiency agreed with estimated decoherence effects from fiber nonlinearity, linewidth, and phase-locking accuracy. This is the highest-power fiber laser that has been coherently locked using any method that allows brightness scaling.
Optics Letters | 2008
Eric Cheung; James G. Ho; Gregory D. Goodno; Robert R. Rice; Josh Rothenberg; Peter A. Thielen; Mark Weber; Michael G. Wickham
A diffractive optical element (DOE) is used as a beam combiner for an actively phase-locked array of fiber lasers. Use of a DOE eliminates the far-field sidelobes and the accompanying loss of beam quality typically observed in tiled coherent laser arrays. Using this technique, we demonstrated coherent combination of five fiber lasers with 91% efficiency and M2=1.04. Combination efficiency and phase locking is robust even with large amplitude and phase fluctuations on the input laser array elements. Calculations and power handling measurements suggest that this approach can scale to both high channel counts and high powers.
Optics Letters | 2001
Gregory D. Goodno; Stephen P. Palese; Joseph Harkenrider; Hagop Injeyan
A diode-pumped Yb:YAG laser with a novel end-pumped zigzag slab architecture has been developed. This architecture provides uniform transverse pump profiles, conduction cooling of the laser crystal, mechanical robustness, and ready scalability to higher powers. At room temperature the laser emits 415 W of cw power with 30% optical conversion efficiency. An image-inverting stable resonator permits a high-brightness output of 252 W with linear polarization and an average M(2) beam quality of 1.45. Q-switched pulse energies of as much as 20 mJ and average Q-switched powers of as much as 150 W were obtained while M(2) was maintained at <1.5.
IEEE Journal of Selected Topics in Quantum Electronics | 2007
Gregory D. Goodno; C.P. Asman; J. Anderegg; S. Brosnan; E.C. Cheung; D. Hammons; H. Injeyan; Hiroshi Komine; William H. Long; M. McClellan; Stuart J. McNaught; S. Redmond; R. Simpson; J. Sollee; Mark Weber; S.B. Weiss; Michael G. Wickham
Recent progress in developing phased arrays of high-brightness solid-state lasers is summarized. We address the prospects for continued brightness-scaling via a model that extrapolates measured results to large numbers of array elements and provides a quantitative illustration of the features of coherent beam combination. This demonstrates that with present-day technology, both slab and fiber lasers have the capability to scale to unprecedented brightness levels.
Optics Express | 2010
Gregory D. Goodno; Chun-Ching Shih; Joshua E. Rothenberg
Coherent combining efficiency is examined analytically for large arrays of non-ideal lasers combined using filled aperture elements with nonuniform splitting ratios. Perturbative expressions are developed for efficiency loss from combiner splitting ratios, power imbalance, spatial misalignments, beam profile nonuniformities, pointing and wavefront errors, depolarization, and temporal dephasing of array elements. It is shown that coupling efficiency of arrays is driven by non-common spatial aberrations, and that common-path aberrations have no impact on coherent combining efficiency. We derive expressions for misalignment losses of Gaussian beams, providing tolerancing metrics for co-alignment and uniformity of arrays of single-mode fiber lasers.
Optics Letters | 2012
Shawn Redmond; Daniel J. Ripin; C. X. Yu; Steven J. Augst; Tso Yee Fan; Peter A. Thielen; Joshua E. Rothenberg; Gregory D. Goodno
Five 500 W fiber amplifiers were coherently combined using a diffractive optical element combiner, generating a 1.93 kW beam whose M(2)=1.1 beam quality exceeded that of the inputs. Combining efficiency near 90% at low powers degraded to 79% at full power owing to thermal expansion of the fiber tip array.
Optical Engineering | 2011
Gregory D. Goodno; Lewis D. Book; Joshua E. Rothenberg; Mark E. Weber; S. Benjamin Weiss
Thulium-doped fiber lasers (TFLs) emitting retina-safe 2-μm wavelengths offer substantial power-scaling advantages over ytterbium-doped fiber lasers for narrow linewidth, single-mode operation. This article reviews the design and performance of a pump-limited, 600 W, single-mode, single-frequency TFL amplifier chain that balances thermal limitations against those arising from stimulated Brillouin scattering (SBS). A simple analysis of thermal and SBS limits is anchored with measurements on kilowatt class Tm and Yb fiber lasers to highlight the scaling advantage of Tm for narrow linewidth operation. We also report recent results on active phase-locking of a TFL amplifier to an optical reference as a precursor to further parallel scaling via coherent beam combining.
conference on lasers and electro optics | 2005
Gregory D. Goodno; Hiroshi Komine; Stuart J. McNaught; Shawn Redmond; William; Long; Randy Simpson; Eric Cheung; Donna Howland; Paul Epp; Park McGraw; Mark Weber; Michael McClellan; Doug Bell; Joe Serrano; Jeff Sollee; Hagop Injeyan; Frank Landers; Herbert DaSilva
Northrop Grumman is developing a laser architecture that can scale to >100 kW with a near-term goal of a 25 kW demonstration. The near-term 25 kW design is based on two chains of four slab amplifiers that produce average power of 12.5 kW each. Adaptive optics sense the output wavefront and piston relative to a reference, then adjust the phase of the master oscillator input to each chain to keep the wavefronts of each chain uniform and in phase. To reach the goal of 12.5 kW per chain, Northrop has demonstrated power scaling of individual amplifiers by extracting 4.5 kW form a single amplifier using a multimode resonator. This is well above the minimum needed to achieve 12.5 kW from a four-amplifier chain.