Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory D. Reinhart is active.

Publication


Featured researches published by Gregory D. Reinhart.


Journal of the American Chemical Society | 2011

Pb2+ as modulator of protein-membrane interactions

Krystal A. Morales; Mauricio Lasagna; Alexey V. Gribenko; Youngdae Yoon; Gregory D. Reinhart; James C. Lee; Wonhwa Cho; Pingwei Li; Tatyana I. Igumenova

Lead is a potent environmental toxin that mimics the effects of divalent metal ions, such as zinc and calcium, in the context of specific molecular targets and signaling processes. The molecular mechanism of lead toxicity remains poorly understood. The objective of this work was to characterize the effect of Pb(2+) on the structure and membrane-binding properties of C2α. C2α is a peripheral membrane-binding domain of Protein Kinase Cα (PKCα), which is a well-documented molecular target of lead. Using NMR and isothermal titration calorimetry (ITC) techniques, we established that C2α binds Pb(2+) with higher affinity than its natural cofactor, Ca(2+). To gain insight into the coordination geometry of protein-bound Pb(2+), we determined the crystal structures of apo and Pb(2+)-bound C2α at 1.9 and 1.5 Å resolution, respectively. A comparison of these structures revealed that the metal-binding site is not preorganized and that rotation of the oxygen-donating side chains is required for the metal coordination to occur. Remarkably, we found that holodirected and hemidirected coordination geometries for the two Pb(2+) ions coexist within a single protein molecule. Using protein-to-membrane Förster resonance energy transfer (FRET) spectroscopy, we demonstrated that Pb(2+) displaces Ca(2+) from C2α in the presence of lipid membranes through the high-affinity interaction with the membrane-unbound C2α. In addition, Pb(2+) associates with phosphatidylserine-containing membranes and thereby competes with C2α for the membrane-binding sites. This process can contribute to the inhibitory effect of Pb(2+) on the PKCα activity.


Biochemistry | 2004

Disentangling the web of allosteric communication in a homotetramer: heterotropic inhibition in phosphofructokinase from Escherichia coli.

Aron W. Fenton; Gregory D. Reinhart

This study quantifies the contribution of each of the four unique inhibiting heterotropic interactions between the allosteric inhibitor, phosphoenolpyruvate (PEP), and the substrate, fructose 6-phosphate (Fru-6-P), in phosphofructokinase from Escherichia coli (EcPFK). The unique heterotropic interactions, previously labeled by the distances between ligand binding sites, were isolated independently by constructing hybrid tetramers. Of the four unique heterotropic PEP-Fru-6-P interactions, the 45 A interaction contributed 25%, the 30 A interaction contributed 31%, and the 23 A interaction contributed 42% of the total PEP inhibition. The 33 A interaction actually causes a small activation of Fru-6-P binding by PEP and therefore contributed -8% of the total observed PEP inhibition. The pattern of relative contribution to PEP inhibition from each interaction in EcPFK does not follow the same pattern seen in MgADP activation of EcPFK. This observation supports the conclusion that although PEP and MgADP bind to the same site, they do not use the same communication pathways to influence the active site. The pattern of relative contribution describing PEP inhibition observed in this study also does not follow the pattern determined for PEP inhibition in phosphofructokinase from Bacillus stearothermophilus, suggesting that these two highly homologous isoforms are not inhibited in the same manner by PEP.


Biophysical Journal | 1998

Obfuscation of Allosteric Structure–Function Relationships by Enthalpy–Entropy Compensation☆

Valarie L. Tlapak-Simmons; Gregory D. Reinhart

The pH and temperature dependence of the allosteric properties of phosphofructokinase (PFK) from Bacillus stearothermophilus have been studied from 5 to 9 and 6 to 40 degrees C, respectively. Throughout this pH and temperature range the allosteric ligands MgADP and phospho(enol)pyruvate (PEP) have no effect on kcat. The dissociation constants of the substrate, fructose 6-phosphate, and the allosteric ligands, as well as the absolute value of the coupling free energies between these ligands, all increase when the pH is raised, indicating that the inhibition by PEP and the activation by MgADP increase despite each ligands somewhat lower affinity. However, the constituent coupling enthalpies and entropies substantially diminish in absolute value as pH is increased, suggesting that the magnitudes of molecular perturbations engendered by the binding of allosteric ligands do not correlate with the magnitudes of the functional consequences of those perturbations. Temperature and pH exert their influence on the observed allosteric behavior by changing the relative contributions made by the largely compensating DeltaH and TDeltaS terms to the coupling free energy.


Current Opinion in Chemical Biology | 1998

Carbamoyl phosphate synthetase: a crooked path from substrates to products.

Frank M. Raushel; James B. Thoden; Gregory D. Reinhart; Hazel M. Holden

The formation of carbamoyl phosphate is catalyzed by a single enzyme using glutamine, bicarbonate and two molecules of ATP via a reaction mechanism that requires a minimum of four consecutive reactions and three unstable intermediates. The recently determined X-ray crystal structure of carbamoyl phosphate synthetase has revealed the location of three separate active sites connected by two molecular tunnels that run through the interior of the protein. It has been demonstrated that the amidotransferase domain within the small subunit of the enzyme from Escherichia coli hydrolyzes glutamine to ammonia via a thioester intermediate with Cys269. The ammonia migrates through the interior of the protein, where it reacts with carboxy phosphate to produce the carbamate intermediate. The carboxy phosphate intermediate is formed by the phosphorylation of bicarbonate by ATP at a site contained within the amino-terminal half of the large subunit. The carbamate intermediate is transported through the interior of the protein to a second site within the carboxy-terminal half of the large subunit, where it is phosphorylated by another ATP to yield the final product, carbamoyl phosphate. The entire journey from substrate to product covers a distance of nearly 100 A.


Biochemistry | 2011

Fluorescence Spectroscopy as a Probe of the Effect of Phosphorylation at Serine 40 of Tyrosine Hydroxylase on the Conformation of Its Regulatory Domain

Shanzhi Wang; Mauricio Lasagna; S. Colette Daubner; Gregory D. Reinhart; Paul F. Fitzpatrick

Phosphorylation of Ser40 in the regulatory domain of tyrosine hydroxylase activates the enzyme by increasing the rate constant for dissociation of inhibitory catecholamines from the active site by 3 orders of magnitude. To probe the changes in the structure of the N-terminal domain upon phosphorylation, individual phenylalanine residues at positions 14, 34, and 74 were replaced with tryptophan in a form of the protein in which the endogenous tryptophans had all been mutated to phenylalanine (W(3)F TyrH). The steady-state fluorescence anisotropy of F74W W(3)F TyrH was unaffected by phosphorylation, but the anisotropies of both F14W and F34W W(3)F TyrH increased significantly upon phosphorylation. The fluorescence of the single tryptophan residue at position 74 was less readily quenched by acrylamide than those at the other two positions; fluorescence increased the rate constant for quenching of the residues at positions 14 and 34 but did not affect that for the residue at position 74. Frequency domain analyses were consistent with phosphorylation having no effect on the amplitude of the rotational motion of the indole ring at position 74, resulting in a small increase in the rotational motion of the residue at position 14 and resulting in a larger increase in the rotational motion of the residue at position 34. These results are consistent with the local environment at position 74 being unaffected by phosphorylation, that at position 34 becoming much more flexible upon phosphorylation, and that at position 14 becoming slightly more flexible upon phosphorylation. The results support a model in which phosphorylation at Ser40 at the N-terminus of the regulatory domain causes a conformational change to a more open conformation in which the N-terminus of the protein no longer inhibits dissociation of a bound catecholamine from the active site.


Biochemistry | 2012

Structure of the apo form of Bacillus stearothermophilus phosphofructokinase.

Rockann Mosser; Manchi C. M. Reddy; John B. Bruning; James C. Sacchettini; Gregory D. Reinhart

The crystal structure of the unliganded form of Bacillus stearothermophilus phosphofructokinase (BsPFK) was determined using molecular replacement to 2.8 Å resolution (Protein Data Bank entry 3U39 ). The apo BsPFK structure serves as the basis for the interpretation of any structural changes seen in the binary or ternary complexes. When the apo BsPFK structure is compared with the previously published liganded structures of BsPFK, the structural impact that the binding of the ligands produces is revealed. This comparison shows that the apo form of BsPFK resembles the substrate-bound form of BsPFK, a finding that differs from previous predictions.


Biochemistry | 2014

Allosteric regulation in phosphofructokinase from the extreme thermophile Thermus thermophilus.

Maria S. McGresham; Michelle R. Lovingshimer; Gregory D. Reinhart

An investigation into the kinetics and regulatory properties of the type-1 phosphofructokinase (PFK) from the extreme thermophile Thermus thermophilus (TtPFK) reveals an enzyme that is inhibited by PEP and activated by ADP by modifying the affinity exhibited for the substrate fructose 6-phosphate (Fru-6-P) in a manner analogous to other prokaryotic PFKs. However, TtPFK binds both of these allosteric ligands significantly more tightly than other bacterial PFKs while effecting a substantially more modest extent of inhibition or activation at 25 °C, reinforcing the principle that binding affinity and effectiveness can be both independent and uncorrelated to one another. These properties have allowed us to establish rigorously that PEP only inhibits by antagonizing the binding of Fru-6-P and not by influencing turnover, a conclusion that requires kcat to be determined under conditions in which both inhibitor and substrate are saturating simultaneously. In addition, the temperature dependence of the allosteric effects on Fru-6-P binding indicate that the coupling free energies are entropy-dominated, as observed previously for PFK from Bacillus stearothermophilus but not for PFK from Escherichia coli , supporting the hypothesis that entropy-dominated allosteric effects may be a characteristic of enzymes derived from thermostable organisms. For such enzymes, the root cause of the allosteric effect may not be easily discerned from static structural information such as that obtained from X-ray crystallography.


Biochemistry | 2015

Enhancing Allosteric Inhibition in Thermus thermophilus Phosphofructokinase

Maria S. McGresham; Gregory D. Reinhart

The coupling between the binding of the substrate Fru-6-P and the inhibitor phospho(enol)pyruvate (PEP) in phosphofructokinase (PFK) from the extreme thermophile Thermus thermophilus is much weaker than that seen in a PFK from Bacillus stearothermophilus. From the crystal structures of Bacillus stearothermophilus PFK (BsPFK) the residues at positions 59, 158, and 215 in BsPFK are located on the path leading from the allosteric site to the nearest active site and are part of the intricate hydrogen-bonding network connecting the two sites. Substituting the corresponding residues in Thermus thermophilus PFK (TtPFK) with the amino acids found at these positions in BsPFK allowed us to enhance the allosteric inhibition by PEP by nearly 3 kcal mol–1 (50-fold) to a value greater than or equal to the coupling observed in BsPFK. Interestingly, each single variant N59D, A158T, and S215H produced a roughly 1 kcal mol–1 increase in coupling free energy of inhibition. The effects of these variants were essentially additive in the three combinations of double variants N59D/A158T, N59D/S215H, and A158T/S215H as well as in the triple variant N59D/A158T/S215H. Consequently, while the hydrogen-bonding network identified is likely involved in the inhibitory allosteric communication, a model requiring a linked chain of interactions connecting the sites is not supported by these data. Despite the fact that the allosteric activator of the bacterial PFK, MgADP, binds at the same allosteric site, the substitutions at positions 59, 158, and 215 do not have an equally dramatic effect on the binding affinity and the allosteric activation by MgADP. The effect of the S215H and N59D/A158T/S215H substitutions on the activation by MgADP could not be determined because of a dramatic drop in MgADP binding affinity that resulted from the S215H substitution. The single variants N59D and A158T supported binding but showed little change in the free energy of activation by MgADP compared to the wild type TtPFK. These results support previous suggestions that heterotropic inhibition and activation occur by different pathways prokaryotic PFK.


Journal of Physical Chemistry B | 2014

Application of three-photon excitation FCS to the study of protein oligomerization.

Suman Ranjit; Alexander S. Dvornikov; David A. Holland; Gregory D. Reinhart; David M. Jameson; Enrico Gratton

Three-photon excitation fluorescence correlation spectroscopy was used to detect oligomerization equilibria of rat liver phosphofructokinase. The fluorescence intensity produced by the three-photon excitation of tryptophan was collected using the DIVER microscope. In this home-built upright microscope, a large area photomultiplier, placed directly below the sample, is used as the detector. The lack of optical elements in the microscope detection path results in a significantly improved detection efficiency in the UV region down to about 300 nm, which encompasses the fluorescence emission from tryptophan. The three-photon excitation autocorrelation decays obtained for phosphofructokinase in the presence of F6P showed the presence of large oligomers. Substitution of F6P with ATP in the buffer medium results in dissociation of the large oligomers, which is reported by the decreased autocorrelation amplitude. The three-photon excitation process was verified from the slope of the log–log plot of intensity against laser power.


Biochemistry | 2013

Redefining the Role of the Quaternary Shift in Bacillus stearothermophilus Phosphofructokinase.

Rockann Mosser; Manchi C. M. Reddy; John B. Bruning; James C. Sacchettini; Gregory D. Reinhart

Bacillus stearothermophilus phosphofructokinase (BsPFK) is a homotetramer that is allosterically inhibited by phosphoenolpyruvate (PEP), which binds along one dimer-dimer interface. The substrate, fructose 6-phosphate (Fru-6-P), binds along the other dimer-dimer interface. Evans et al. observed that the structure with inhibitor (phosphoglycolate) bound, compared to the structure of wild-type BsPFK with substrate and activator bound, exhibits a 7° rotation about the substrate-binding interface, termed the quaternary shift [Schirmer, T., and Evans, P. R. (1990) Nature 343, 140-145]. We report that the variant D12A BsPFK exhibits a 100-fold increase in its binding affinity for PEP, a 50-fold decrease in its binding affinity for Fru-6-P, but an inhibitory coupling comparable to that of the wild type. Crystal structures of the apo and PEP-bound forms of D12A BsPFK have been determined (Protein Data Bank entries 4I36 and 4I7E , respectively), and both indicate a shifted structure similar to the inhibitor-bound structure of the wild type. D12 does not directly bind to either substrate or inhibitor and is located along the substrate-binding interface. A conserved hydrogen bond between D12 and T156 forms across the substrate-binding subunit-subunit interface in the substrate-bound form of BsPFK. The variant T156A BsPFK, when compared to the wild type, shows a 30-fold increase in PEP binding affinity, a 17-fold decrease in Fru-6-P binding affinity, and an estimated coupling that is also approximately equal to that of the wild type. In addition, the T156A BsPFK crystal structure bound to PEP is reported (Protein Data Bank entry 4I4I ), and it exhibits a shifted structure similar to that of D12A BsPFK and the inhibitor-bound structure of the wild type. The results suggest that the main role of the quaternary shift may be to influence ligand binding and not to cause the heterotropic allosteric inhibition per se.

Collaboration


Dive into the Gregory D. Reinhart's collaboration.

Top Co-Authors

Avatar

Jason L. Johnson

Southwestern Oklahoma State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Audrey S. Pham

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge