Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory De Crescenzo is active.

Publication


Featured researches published by Gregory De Crescenzo.


Molecular and Cellular Biology | 2001

Dual interactions of the translational repressor Paip2 with poly(A) binding protein.

Kianoush Khaleghpour; Avak Kahvejian; Gregory De Crescenzo; Guylaine Roy; Yuri V. Svitkin; Hiroaki Imataka; Maureen O'Connor-McCourt; Nahum Sonenberg

ABSTRACT The cap structure and the poly(A) tail of eukaryotic mRNAs act synergistically to enhance translation. This effect is mediated by a direct interaction of eukaryotic initiation factor 4G and poly(A) binding protein (PABP), which brings about circularization of the mRNA. Of the two recently identified PABP-interacting proteins, one, Paip1, stimulates translation, and the other, Paip2, which competes with Paip1 for binding to PABP, represses translation. Here we studied the Paip2-PABP interaction. Biacore data and far-Western analysis revealed that Paip2 contains two binding sites for PABP, one encompassing a 16-amino-acid stretch located in the C terminus and a second encompassing a larger central region. PABP also contains two binding regions for Paip2, one located in the RNA recognition motif (RRM) region and the other in the carboxy-terminal region. A two-to-one stoichiometry for binding of Paip2 to PABP with two independentKd s of 0.66 and 74 nM was determined. Thus, our data demonstrate that PABP and Paip2 could form a trimeric complex containing one PABP molecule and two Paip2 molecules. Significantly, only the central Paip2 fragment, which binds with high affinity to the PABP RRM region, inhibits PABP binding to poly(A) RNA and translation.


Molecular and Cellular Biology | 2002

Paip1 Interacts with Poly(A) Binding Protein through Two Independent Binding Motifs

Guylaine Roy; Gregory De Crescenzo; Kianoush Khaleghpour; Avak Kahvejian; Maureen O'Connor-McCourt; Nahum Sonenberg

ABSTRACT The 3′ poly(A) tail of eukaryotic mRNAs plays an important role in the regulation of translation. The poly(A) binding protein (PABP) interacts with eukaryotic initiation factor 4G (eIF4G), a component of the eIF4F complex, which binds to the 5′ cap structure. The PABP-eIF4G interaction brings about the circularization of the mRNA by joining its 5′ and 3′ termini, thereby stimulating mRNA translation. The activity of PABP is regulated by two interacting proteins, Paip1 and Paip2. To study the mechanism of the Paip1-PABP interaction, far-Western, glutathione S-transferase pull-down, and surface plasmon resonance experiments were performed. Paip1 contains two binding sites for PABP, PAM1 and PAM2 (for PABP-interacting motifs 1 and 2). PAM2 consists of a 15-amino-acid stretch residing in the N terminus, and PAM1 encompasses a larger C-terminal acidic-amino-acid-rich region. PABP also contains two Paip1 binding sites, one located in RNA recognition motifs 1 and 2 and the other located in the C-terminal domain. Paip1 binds to PABP with a 1:1 stoichiometry and an apparent Kd of 1.9 nM.


Bioconjugate Chemistry | 2011

Quantification of Primary Amine Groups Available for Subsequent Biofunctionalization of Polymer Surfaces

Samantha Noel; Benoît Liberelle; Lucie Robitaille; Gregory De Crescenzo

Biocompatible polymers are commonly functionalized with specific moieties such as amino groups to modify their surface properties and/or to attach bioactive compounds. A reliable method is usually required to characterize amino group surface densities. In this study, aminated polyethylene terephthalate (PET) films were generated via an aminolysis reaction involving either ethylenediamine molecules (EtDA), in order to vary easily the amino group density on PET surfaces, or 25 kDa polyvinylamine (PVAm) as an alternative reagent preventing bulk damages resulting from the aminolysis reaction. Among commonly used dyes for amino group quantification, Orange II and Coomassie Brillant Blue (CBB) were selected to quantify the extent of amine grafting resulting from these derivatization procedures. Rapid and convenient colorimetric assays were compared to surface atomic compositions obtained from X-ray photoelectron spectroscopy (XPS) measurements. Orange II was found to be the most appropriate dye for quantifying primary amine groups in a reliable and specific way. Due to its unique negative charge and low steric hindrance compared to CBB, the Orange II dye was very sensitive and provided reliable quantification over a wide range of amino group surface densities (ca. 5 to at least 200 pmol/mm(2)). In order to further validate the use of the Orange II dye for amino group quantification, a heterobifunctional linker reacting with amino groups was then grafted on modified PET surfaces. Interestingly, the good correlation between the densities of adsorbed Orange II and covalently grafted linkers suggests that the Orange II method is a relevant, reliable, easy, and inexpensive method to predict the amount of amino groups available for subsequent functionalization of polymer surfaces.


The EMBO Journal | 2004

Structural basis of ligand recognition by PABC, a highly specific peptide-binding domain found in poly(A)-binding protein and a HECT ubiquitin ligase

Guennadi Kozlov; Gregory De Crescenzo; Nadia S Lim; Nadeem Siddiqui; Daniel Fantus; Avak Kahvejian; Jean-François Trempe; Demetra Elias; Irena Ekiel; Nahum Sonenberg; Maureen O'Connor-McCourt; Kalle Gehring

The C‐terminal domain of poly(A)‐binding protein (PABC) is a peptide‐binding domain found in poly(A)‐binding proteins (PABPs) and a HECT (homologous to E6‐AP C‐terminus) family E3 ubiquitin ligase. In protein synthesis, the PABC domain of PABP functions to recruit several translation factors possessing the PABP‐interacting motif 2 (PAM2) to the mRNA poly(A) tail. We have determined the solution structure of the human PABC domain in complex with two peptides from PABP‐interacting protein‐1 (Paip1) and Paip2. The structures show a novel mode of peptide recognition, in which the peptide binds as a pair of β‐turns with extensive hydrophobic, electrostatic and aromatic stacking interactions. Mutagenesis of PABC and peptide residues was used to identify key protein–peptide interactions and quantified by isothermal calorimetry, surface plasmon resonance and GST pull‐down assays. The results provide insight into the specificity of PABC in mediating PABP–protein interactions.


The EMBO Journal | 2006

Poly(A) binding protein (PABP) homeostasis is mediated by the stability of its inhibitor, Paip2

Madoka Yoshida; Kaori Yoshida; Guennadi Kozlov; Nadia S Lim; Gregory De Crescenzo; Zhiyu Pang; Juan Jose Berlanga; Avak Kahvejian; Kalle Gehring; Simon S. Wing; Nahum Sonenberg

The poly(A)‐binding protein (PABP) is a unique translation initiation factor in that it binds to the mRNA 3′ poly(A) tail and stimulates recruitment of the ribosome to the mRNA at the 5′ end. PABP activity is tightly controlled by the PABP‐interacting protein 2 (Paip2), which inhibits translation by displacing PABP from the mRNA. Here, we describe a close interplay between PABP and Paip2 protein levels in the cell. We demonstrate a mechanism for this co‐regulation that involves an E3 ubiquitin ligase, EDD, which targets Paip2 for degradation. PABP depletion by RNA interference (RNAi) causes co‐depletion of Paip2 protein without affecting Paip2 mRNA levels. Upon PABP knockdown, Paip2 interacts with EDD, which leads to Paip2 ubiquitination. Supporting a critical role for EDD in Paip2 degradation, knockdown of EDD expression by siRNA leads to an increase in Paip2 protein stability. Thus, we demonstrate that the turnover of Paip2 in the cell is mediated by EDD and is regulated by PABP. This mechanism serves as a homeostatic feedback to control the activity of PABP in cells.


Biomacromolecules | 2013

Ionization Behavior of Chitosan and Chitosan–DNA Polyplexes Indicate That Chitosan Has a Similar Capability to Induce a Proton-Sponge Effect as PEI

Isabelle Richard; Marc Thibault; Gregory De Crescenzo; Michael D. Buschmann; Marc Lavertu

Polycations having a high buffering capacity in the endosomal pH range, such as polyethylenimine (PEI), are known to be efficient at delivering nucleic acids by overcoming lysosomal sequestration possibly through the proton sponge effect, although other mechanisms such as membrane disruption arising from an interaction between the polycation and the endosome/lysosome membrane, have been proposed. Chitosan is an efficient delivery vehicle for nucleic acids, yet its buffering capacity has been thought to be significantly lower than that of PEI, suggesting that the molecular mechanism responsible for endolysosomal escape was not proton sponge based. However, previous comparisons of PEI and chitosan buffering capacity were performed on a mass concentration basis instead of a charge concentration basis, the latter being the most relevant comparison basis because polycation-DNA complexes form at ratios of charge groups (amine to phosphate), rather than according to mass. We hypothesized that chitosan has a high buffering capacity when compared to PEI on a molar basis and could therefore possibly mediate endolysosomal release through the proton sponge effect. In this study, we examined the ionization behavior of chitosan and chitosan-DNA complexes and compared to that of PEI and polylysine on a charge concentration basis. A mean field theory based on the use of the Poisson-Boltzmann equation and an Ising model were also applied to model ionization behavior of chitosan and PEI, respectively. We found that chitosan has a higher buffering capacity than PEI in the endolysosomal pH range, while the formation of chitosan-DNA complexes reduces chitosan buffering capacity because of the negative electrostatic environment of nucleic acids that facilitates chitosan ionization. These data suggest that chitosans have a similar capacity as PEI to mediate endosomal escape through the proton sponge effect, possibly in a manner which depends on the presence of excess chitosan.


Journal of Molecular Biology | 2003

Transforming Growth Factor-beta (TGF-β) Binding to the Extracellular Domain of the Type II TGF-β Receptor: Receptor Capture on a Biosensor Surface Using a New Coiled-coil Capture System Demonstrates that Avidity Contributes Significantly to High Affinity Binding

Gregory De Crescenzo; Phuong Lan Pham; Yves Durocher; Maureen O'Connor-McCourt

Mature TGF-beta isoforms, which are covalent dimers, signal by binding to three types of cell surface receptors, the type I, II and III TGF-beta receptors. A complex composed of the TGF-beta ligand and the type I and II receptors is required for signaling. The type II receptor is responsible for recruiting TGF-beta into the heteromeric ligand/type I receptor/type II receptor complex. The purpose of this study was to test for the extent that avidity contributes to receptor affinity. Using a surface plasmon resonance (SPR)-based biosensor (the BIACORE), we captured the extracellular domain of the type II receptor (TbetaRIIED) at the biosensor surface in an oriented and stable manner by using a de novo designed coiled-coil (E/K coil) heterodimerizing system. We characterized the kinetics of binding of three TGF-beta isoforms to this immobilized TbetaRIIED. The results demonstrate that the stoichiometry of TGF-beta binding to TbetaRIIED was one dimeric ligand to two receptors. All three TGF-beta isoforms had rapid and similar association rates, but different dissociation rates, which resulted in the equilibrium dissociation constants being approximately 5pM for the TGF-beta1 and -beta3 isoforms, and 5nM for the TGF-beta2 isoform. Since these apparent affinities are at least four orders of magnitude higher than those determined when TGF-beta was immobilized, and are close to those determined for TbetaRII at the cell surface, we suggest that avidity contributes significantly to high affinity receptor binding both at the biosensor and cell surfaces. Finally, we demonstrated that the coiled-coil immobilization approach does not require the purification of the captured protein, making it an attractive tool for the rapid study of any protein-protein interaction.


Biomaterials | 2014

Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold

Loïc Binan; Charlène Tendey; Gregory De Crescenzo; Rouwayda El Ayoubi; Abdellah Ajji; Mario Jolicoeur

Neural stem cells (NSCs) provide promising therapeutic potential for cell replacement therapy in spinal cord injury (SCI). However, high increases of cell viability and poor control of cell differentiation remain major obstacles. In this study, we have developed a non-woven material made of co-electrospun fibers of poly L-lactic acid and gelatin with a degradation rate and mechanical properties similar to peripheral nerve tissue and investigated their effect on cell survival and differentiation into motor neuronal lineages through the controlled release of retinoic acid (RA) and purmorphamine. Engineered Neural Stem-Like Cells (NSLCs) seeded on these fibers, with and without the instructive cues, differentiated into β-III-tubulin, HB-9, Islet-1, and choactase-positive motor neurons by immunostaining, in response to the release of the biomolecules. In addition, the bioactive material not only enhanced the differentiation into motor neuronal lineages but also promoted neurite outgrowth. This study elucidated that a combination of electrospun fiber scaffolds, neural stem cells, and controlled delivery of instructive cues could lead to the development of a better strategy for peripheral nerve injury repair.


Biomaterials | 2010

Human corneal epithelial cell response to epidermal growth factor tethered via coiled-coil interactions

Cyril Boucher; Juan-Carlos Ruiz; Marc Thibault; Michael D. Buschmann; M. R. Wertheimer; Mario Jolicoeur; Yves Durocher; Gregory De Crescenzo

The development of new strategies for protein immobilization to control cell adhesion, growth and differentiation is of prime interest in the field of tissue engineering. Here we propose a versatile approach based on the interaction between two de novo designed peptides, Ecoil and Kcoil, for oriented immobilization of epidermal growth factor (EGF) on polyethylene terephthalate (PET) films. After amination of PET surfaces by ammonia plasma treatment, Kcoil peptides were covalently grafted in an oriented fashion using succinimidyl 6-[30-(2-pyridyldithio)-propionamido] hexanoate (LC-SPDP) linker, and the Kcoil-functionalized films were characterized by X-ray photoelectron spectroscopy (XPS). Bioactivity of Ecoil-EGF captured on Kcoil-functionalized PET via coiled-coil interactions was confirmed by EGF receptor phosphorylation analysis following A-431 cell attachment. We also demonstrated cell biological effects where tethered EGF enhanced adhesion, spreading and proliferation of human corneal epithelial cells compared to EGF that was either physically adsorbed or present in solution. Tethered EGF effects were most likely linked to the prolonged activation of both mitogen-activated protein kinase and phosphoinositidine 3-kinase pathways. Taken together, our results indicate that coiled-coil-based oriented immobilization is a powerful method to specifically tailor biomaterial surfaces for tissue engineering applications.


Journal of Biological Chemistry | 2007

Structural basis of ubiquitin recognition by the ubiquitin-associated (UBA) domain of the ubiquitin ligase EDD.

Guennadi Kozlov; Long Nguyen; Tong Lin; Gregory De Crescenzo; Morag Park; Kalle Gehring

EDD (or HYD) is an E3 ubiquitin ligase in the family of HECT (homologous to E6-AP C terminus) ligases. EDD contains an N-terminal ubiquitin-associated (UBA) domain, which is present in a variety of proteins involved in ubiquitin-mediated processes. Here, we use isothermal titration calorimetry (ITC), NMR titrations, and pull-down assays to show that the EDD UBA domain binds ubiquitin. The 1.85Å crystal structure of the complex with ubiquitin reveals the structural basis of ubiquitin recognition by UBA helices α1 and α3. The structure shows a larger number of intermolecular hydrogen bonds than observed in previous UBA/ubiquitin complexes. Two of these involve ordered water molecules. The functional importance of residues at the UBA/ubiquitin interface was confirmed using site-directed mutagenesis. Surface plasmon resonance (SPR) measurements show that the EDD UBA domain does not have a strong preference for polyubiquitin chains over monoubiquitin. This suggests that EDD binds to monoubiquitinated proteins, which is consistent with its involvement in DNA damage repair pathways.

Collaboration


Dive into the Gregory De Crescenzo's collaboration.

Top Co-Authors

Avatar

Yves Durocher

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Benoît Liberelle

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar

Mario Jolicoeur

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar

Sophie Lerouge

École de technologie supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. R. Wertheimer

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar

P. Lequoy

École de technologie supérieure

View shared research outputs
Top Co-Authors

Avatar

Cyril Boucher

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar

Olivier Henry

École Polytechnique de Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge