Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory E. Bigford is active.

Publication


Featured researches published by Gregory E. Bigford.


Journal of Neurotrauma | 2009

A novel protein complex in membrane rafts linking the NR2B glutamate receptor and autophagy is disrupted following traumatic brain injury

Gregory E. Bigford; Ofelia F. Alonso; W. Dalton Dietrich; Robert W. Keane

Hyperactivation of N-methyl-D-aspartate receptors (NRs) is associated with neuronal cell death induced by traumatic brain injury (TBI) and many neurodegenerative conditions. NR signaling efficiency is dependent on receptor localization in membrane raft microdomains. Recently, excitotoxicity has been linked to autophagy, but mechanisms governing signal transduction remain unclear. Here we have identified protein interactions between NR2B signaling intermediates and the autophagic protein Beclin-1 in membrane rafts of the normal rat cerebral cortex. Moderate TBI induced rapid recruitment and association of NR2B and pCaMKII to membrane rafts, and translocation of Beclin-1 out of membrane microdomains. Furthermore, TBI caused significant increases in expression of key autophagic proteins and morphological hallmarks of autophagy that were significantly attenuated by treatment with the NR2B antagonist Ro 25-6981. Thus, stimulation of autophagy by NR2B signaling may be regulated by redistribution of Beclin-1 in membrane rafts after TBI.


Advances in Nutrition | 2014

Supplemental Substances Derived from Foods as Adjunctive Therapeutic Agents for Treatment of Neurodegenerative Diseases and Disorders

Gregory E. Bigford; Gianluca Del Rossi

Neurodegenerative disorders and diseases (NDDs) that are either chronically acquired or triggered by a singular detrimental event are a rapidly growing cause of disability and/or death. In recent times, there have been major advancements in our understanding of various neurodegenerative disease states that have revealed common pathologic features or mechanisms. The many mechanistic parallels discovered between various neurodegenerative diseases suggest that a single therapeutic approach may be used to treat multiple disease conditions. Of late, natural compounds and supplemental substances have become an increasingly attractive option to treat NDDs because there is growing evidence that these nutritional constituents have potential adjunctive therapeutic effects (be it protective or restorative) on various neurodegenerative diseases. Here we review relevant experimental and clinical data on supplemental substances (i.e., curcuminoids, rosmarinic acid, resveratrol, acetyl-L-carnitine, and ω-3 (n-3) polyunsaturated fatty acids) that have demonstrated encouraging therapeutic effects on chronic diseases, such as Alzheimers disease and neurodegeneration resulting from acute adverse events, such as traumatic brain injury.


Physical Medicine and Rehabilitation Clinics of North America | 2014

Reducing Cardiometabolic Disease in Spinal Cord Injury

Jochen Kressler; Rachel E. Cowan; Gregory E. Bigford; Mark S. Nash

Accelerated cardiometabolic disease is a serious health hazard after spinal cord injuries (SCI). Lifestyle intervention with diet and exercise remains the cornerstone of effective cardiometabolic syndrome treatment. Behavioral approaches enhance compliance and benefits derived from both diet and exercise interventions and are necessary to assure that persons with SCI profit from intervention. Multitherapy strategies will likely be needed to control challenging component risks, such as gain in body mass, which has far reaching implications for maintenance of daily function as well as health.


Asn Neuro | 2013

Neuroendocrine and Cardiac Metabolic Dysfunction and NLRP3 Inflammasome Activation in Adipose Tissue and Pancreas following Chronic Spinal Cord Injury in the Mouse

Gregory E. Bigford; Valerie Bracchi-Ricard; Robert W. Keane; Mark S. Nash; John R. Bethea

CVD (cardiovascular disease) represents a leading cause of mortality in chronic SCI (spinal cord injury). Several component risk factors are observed in SCI; however, the underlying mechanisms that contribute to these risks have not been defined. Central and peripheral chronic inflammation is associated with metabolic dysfunction and CVD, including adipokine regulation of neuroendocrine and cardiac function and inflammatory processes initiated by the innate immune response. We use female C57 Bl/6 mice to examine neuroendocrine, cardiac, adipose and pancreatic signaling related to inflammation and metabolic dysfunction in response to experimentally induced chronic SCI. Using immuno-histochemical, -precipitation, and -blotting analysis, we show decreased POMC (proopiomelanocortin) and increased NPY (neuropeptide-Y) expression in the hypothalamic ARC (arcuate nucleus) and PVN (paraventricular nucleus), 1-month post-SCI. Long-form leptin receptor (Ob-Rb), JAK2 (Janus kinase)/STAT3 (signal transducer and activator of transcription 3)/p38 and RhoA/ROCK (Rho-associated kinase) signaling is significantly increased in the heart tissue post-SCI, and we observe the formation and activation of the NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome in VAT (visceral adipose tissue) and pancreas post-SCI. These data demonstrate neuroendocrine signaling peptide alterations, associated with central inflammation and metabolic dysfunction post-SCI, and provide evidence for the peripheral activation of signaling mechanisms involved in cardiac, VAT and pancreatic inflammation and metabolic dysfunction post-SCI. Further understanding of biological mechanisms contributing to SCI-related inflammatory processes and metabolic dysfunction associated with CVD pathology may help to direct therapeutic and rehabilitation countermeasures.


Journal of Biological Chemistry | 2012

5-Hydroxytryptamine 5HT2C Receptors Form a Protein Complex with N-Methyl-d-aspartate GluN2A Subunits and Activate Phosphorylation of Src Protein to Modulate Motoneuronal Depolarization

Gregory E. Bigford; Nauman S. Chaudhry; Robert W. Keane; Alice M. Holohean

Background: 5-Hydroxytryptamine (5HT) modulates N-methyl-d-aspartate (NMDA) depolarization. Results: 5HT2C co-immunoprecipitates with GluN2A and enhances NMDA motoneuronal depolarization through phosphorylation of SrcTyr-416. Conclusion: 5HT modulates NMDA through Src phosphorylation in a molecular complex that is localized in the processes of spinal neurons. Significance: 5HT2C modulation of NMDA excitation is coordinated by a molecular complex. N-Methyl-d-aspartate (NMDA)-gated ion channels are known to play a critical role in motoneuron depolarization, but the molecular mechanisms modulating NMDA activation in the spinal cord are not well understood. This study demonstrates that activated 5HT2C receptors enhance NMDA depolarizations recorded electrophysiologically from motoneurons. Pharmacological studies indicate involvement of Src tyrosine kinase mediates 5HT2C facilitation of NMDA. RT-PCR analysis revealed edited forms of 5HT2C were present in mammalian spinal cord, indicating the availability of G-protein-independent isoforms. Spinal cord neurons treated with the 5HT2C agonist MK 212 showed increased SrcTyr-416 phosphorylation in a dose-dependent manner thus verifying that Src is activated after treatment. In addition, 5HT2C antagonists and tyrosine kinase inhibitors blocked 5HT2C-mediated SrcTyr-416 phosphorylation and also enhanced NMDA-induced motoneuron depolarization. Co-immunoprecipitation of synaptosomal fractions showed that GluN2A, 5HT2C receptors, and Src tyrosine kinase form protein associations in synaptosomes. Moreover, immunohistochemical analysis demonstrated GluN2A and 5HT2C receptors co-localize on the processes of spinal neurons. These findings reveal that a distinct multiprotein complex links 5-hydroxytryptamine-activated intracellular signaling events with NMDA-mediated functional activity.


PLOS ONE | 2012

Alterations in Mouse Hypothalamic Adipokine Gene Expression and Leptin Signaling following Chronic Spinal Cord Injury and with Advanced Age

Gregory E. Bigford; Valerie Bracchi-Ricard; Mark S. Nash; John R. Bethea

Chronic spinal cord injury (SCI) results in an accelerated trajectory of several cardiovascular disease (CVD) risk factors and related aging characteristics, however the molecular mechanisms that are activated have not been explored. Adipokines and leptin signaling are known to play a critical role in neuro-endocrine regulation of energy metabolism, and are now implicated in central inflammatory processes associated with CVD. Here, we examine hypothalamic adipokine gene expression and leptin signaling in response to chronic spinal cord injury and with advanced age. We demonstrate significant changes in fasting-induced adipose factor (FIAF), resistin (Rstn), long-form leptin receptor (LepRb) and suppressor of cytokine-3 (SOCS3) gene expression following chronic SCI and with advanced age. LepRb and Jak2/stat3 signaling is significantly decreased and the leptin signaling inhibitor SOCS3 is significantly elevated with chronic SCI and advanced age. In addition, we investigate endoplasmic reticulum (ER) stress and activation of the uncoupled protein response (UPR) as a biological hallmark of leptin resistance. We observe the activation of the ER stress/UPR proteins IRE1, PERK, and eIF2alpha, demonstrating leptin resistance in chronic SCI and with advanced age. These findings provide evidence for adipokine-mediated inflammatory responses and leptin resistance as contributing to neuro-endocrine dysfunction and CVD risk following SCI and with advanced age. Understanding the underlying mechanisms contributing to SCI and age related CVD may provide insight that will help direct specific therapeutic interventions.


Spinal cord series and cases | 2017

A lifestyle intervention program for successfully addressing major cardiometabolic risks in persons with SCI: a three-subject case series

Gregory E. Bigford; Armando J. Mendez; Luisa Betancourt; Patricia Burns-Drecq; Deborah Backus; Mark S. Nash

IntroductionThis study is a prospective case series analyzing the effects of a comprehensive lifestyle intervention program in three patients with chronic paraplegia having major risks for the cardiometabolic syndrome (CMS).Case presentation:Individuals underwent an intense 6-month program of circuit resistance exercise, nutrition using a Mediterranean diet and behavioral support, followed by a 6-month extension (maintenance) phase involving minimal support. The primary goal was a 7% reduction of body mass. Other outcomes analyzed insulin resistance using the HOMA-IR model, and plasma levels of fasting triglycerides and high-density lipoprotein cholesterol. All participants achieved the goal for 7% reduction of body mass and maintained the loss after the MP. Improvements were observed in 2/3 subjects for HOMA-IR and high-density lipoprotein cholesterol. All participants improved their risk for plasma triglycerides.Discussion:We conclude, in a three-person case series of persons with chronic paraplegia, a lifestyle intervention program involving circuit resistance training, a calorie-restrictive Mediterranean-style diet and behavioral support, results in clinically significant loss of body mass and effectively reduced component risks for CMS and diabetes. These results were for the most part maintained after a 6-month MP involving minimal supervision.


PLOS ONE | 2018

Effects of ursolic acid on sub-lesional muscle pathology in a contusion model of spinal cord injury

Gregory E. Bigford; Andrew J. Darr; Valerie Bracchi-Ricard; Han Gao; Mark S. Nash; John R. Bethea

Spinal Cord Injury (SCI) results in severe sub-lesional muscle atrophy and fiber type transformation from slow oxidative to fast glycolytic, both contributing to functional deficits and maladaptive metabolic profiles. Therapeutic countermeasures have had limited success and muscle-related pathology remains a clinical priority. mTOR signaling is known to play a critical role in skeletal muscle growth and metabolism, and signal integration of anabolic and catabolic pathways. Recent studies show that the natural compound ursolic acid (UA) enhances mTOR signaling intermediates, independently inhibiting atrophy and inducing hypertrophy. Here, we examine the effects of UA treatment on sub-lesional muscle mTOR signaling, catabolic genes, and functional deficits following severe SCI in mice. We observe that UA treatment significantly attenuates SCI induced decreases in activated forms of mTOR, and signaling intermediates PI3K, AKT, and S6K, and the upregulation of catabolic genes including FOXO1, MAFbx, MURF-1, and PSMD11. In addition, UA treatment improves SCI induced deficits in body and sub-lesional muscle mass, as well as functional outcomes related to muscle function, motor coordination, and strength. These findings provide evidence that UA treatment may be a potential therapeutic strategy to improve muscle-specific pathological consequences of SCI.


Topics in Spinal Cord Injury Rehabilitation | 2017

Nutritional health considerations for persons with spinal cord injury

Gregory E. Bigford; Mark S. Nash

Chronic spinal cord injury (SCI) often results in morbidity and mortality due to all-cause cardiovascular disease (CVD) and comorbid endocrine disorders. Several component risk factors for CVD, described as the cardiometabolic syndrome (CMS), are prevalent in SCI, with the individual risks of obesity and insulin resistance known to advance the disease prognosis to a greater extent than other established risks. Notably, adiposity and insulin resistance are attributed in large part to a commonly observed maladaptive dietary/nutritional profile. Although there are no evidence-based nutritional guidelines to address the CMS risk in SCI, contemporary treatment strategies advocate more comprehensive lifestyle management that includes sustained nutritional guidance as a necessary component for overall health management. This monograph describes factors in SCI that contribute to CMS risks, the current nutritional profile and its contribution to CMS risks, and effective treatment strategies including the adaptability of the Diabetes Prevention Program (DPP) to SCI. Establishing appropriate nutritional guidelines and recommendations will play an important role in addressing the CMS risks in SCI and preserving optimal long-term health.


Anticancer Research | 2014

Combination of Arginine Deprivation with TRAIL Treatment as a Targeted-Therapy for Mesothelioma

Medhi Wangpaichitr; Chunjing Wu; Gregory E. Bigford; George Theodoropoulos; Min You; Ying Ying Li; Javier Verona-Santos; Lynn G. Feun; Dao M. Nguyen; Niramol Savaraj

Collaboration


Dive into the Gregory E. Bigford's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Darr

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Ann M. Spungen

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles A. Stewart

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge