Gregory Emery
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregory Emery.
Nature Cell Biology | 2013
Damien Ramel; Xiaobo Wang; Carl Laflamme; Denise J. Montell; Gregory Emery
Collective cell movements contribute to development and metastasis. The small GTPase Rac is a key regulator of actin dynamics and cell migration but the mechanisms that restrict Rac activation and localization in a group of collectively migrating cells are unknown. Here, we demonstrate that the small GTPases Rab5 and Rab11 regulate Rac activity and polarization during collective cell migration. We use photoactivatable forms of Rac to demonstrate that Rab11 acts on the entire group to ensure that Rac activity is properly restricted to the leading cell through regulation of cell–cell communication. In addition, we show that Rab11 binds to the actin cytoskeleton regulator Moesin and regulates its activation in vivo during migration. Accordingly, reducing the level of Moesin activity also affects cell–cell communication, whereas expressing active Moesin rescues loss of Rab11 function. Our model suggests that Rab11 controls the sensing of the relative levels of Rac activity in a group of cells, leading to the organization of individual cells in a coherent multicellular motile structure.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Gloria Assaker; Damien Ramel; Stefanie K. Wculek; Marcos González-Gaitán; Gregory Emery
Border cell migration is a stereotyped migration occurring during the development of the Drosophila egg chamber. During this process, a cluster composed of six to eight follicle cells migrates between nurse cells toward the oocyte. Receptor tyrosine kinases (RTKs) are enriched at the leading edge of the follicle cells and establish the directionality of their migration. Endocytosis has been shown to play a role in the maintenance of this polarization; however, the mechanisms involved are largely unknown. In this study, we show that border cell migration requires the function of the small GTPases Rab5 and Rab11 that regulate trafficking through the early and the recycling endosome, respectively. Expression of a dominant negative form of rab11 induces a loss of the polarization of RTK activity, which correlates with a severe migration phenotype. In addition, we demonstrate that the exocyst component Sec15 is distributed in structures that are polarized during the migration process in a Rab11-dependent manner and that the down-regulation of different subunits of the exocyst also affects migration. Together, our data demonstrate a fundamental role for a plasma membrane–endosome trafficking cycle in the maintenance of active RTK at the leading edge of border cells during their migration.
Journal of Cell Science | 2003
Gregory Emery; Robert G. Parton; Manuel Rojo; Jean Gruenberg
Trans-membrane proteins of the p24 family are abundant, oligomeric proteins predominantly found in cis-Golgi membranes. They are not easily studied in vivo and their functions are controversial. We found that p25 can be targeted to the plasma membrane after inactivation of its canonical KKXX motif (KK to SS, p25SS), and that p25SS causes the co-transport of other p24 proteins beyond the Golgi complex, indicating that wild-type p25 plays a crucial role in retaining p24 proteins in cis-Golgi membranes. We then made use of these observations to study the intrinsic properties of these proteins, when present in a different membrane context. At the cell surface, the p25SS mutant segregates away from both the transferrin receptor and markers of lipid rafts, which are enriched in cholesterol and glycosphingolipids. This suggests that p25SS localizes to, or contributes to form, specialized membrane domains, presumably corresponding to oligomers of p25SS and other p24 proteins. Once at the cell surface, p25SS is endocytosed, together with other p24 proteins, and eventually accumulates in late endosomes, where it remains confined to well-defined membrane regions visible by electron microscopy. We find that this p25SS accumulation causes a concomitant accumulation of cholesterol in late endosomes, and an inhibition of their motility – two processes that are functionally linked. Yet, the p25SS-rich regions themselves seem to exclude not only Lamp1 but also accumulated cholesterol. One may envision that p25SS accumulation, by excluding cholesterol from oligomers, eventually overloads neighboring late endosomal membranes with cholesterol beyond their capacity (see Discussion). In any case, our data show that p25 and presumably other p24 proteins are endowed with the intrinsic capacity to form highly specialized domains that control membrane composition and dynamics. We propose that p25 and other p24 proteins control the fidelity of membrane transport by maintaining cholesterol-poor membranes in the Golgi complex.
Journal of Cell Biology | 2012
Carl Laflamme; Gloria Assaker; Damien Ramel; Jonas F. Dorn; Desmond She; Paul S. Maddox; Gregory Emery
Drosophila Evi5 is a Rab-GAP that acts on the membrane-trafficking mediator Rab11 to promote guidance receptor polarization during border cell migration.
PLOS Pathogens | 2012
Wendy J. van Zuylen; Priscilla Doyon; Jean-François Clément; Kashif Aziz Khan; Lisa M. D'Ambrosio; Florence Dô; Myriam St-Amant-Verret; Tasheen Wissanji; Gregory Emery; Anne-Claude Gingras; Sylvain Meloche; Marc J. Servant
Tumor Necrosis Factor receptor-associated factor-3 (TRAF3) is a central mediator important for inducing type I interferon (IFN) production in response to intracellular double-stranded RNA (dsRNA). Here, we report the identification of Sec16A and p115, two proteins of the ER-to-Golgi vesicular transport system, as novel components of the TRAF3 interactome network. Notably, in non-infected cells, TRAF3 was found associated with markers of the ER-Exit-Sites (ERES), ER-to-Golgi intermediate compartment (ERGIC) and the cis-Golgi apparatus. Upon dsRNA and dsDNA sensing however, the Golgi apparatus fragmented into cytoplasmic punctated structures containing TRAF3 allowing its colocalization and interaction with Mitochondrial AntiViral Signaling (MAVS), the essential mitochondria-bound RIG-I-like Helicase (RLH) adaptor. In contrast, retention of TRAF3 at the ER-to-Golgi vesicular transport system blunted the ability of TRAF3 to interact with MAVS upon viral infection and consequently decreased type I IFN response. Moreover, depletion of Sec16A and p115 led to a drastic disorganization of the Golgi paralleled by the relocalization of TRAF3, which under these conditions was unable to associate with MAVS. Consequently, upon dsRNA and dsDNA sensing, ablation of Sec16A and p115 was found to inhibit IRF3 activation and anti-viral gene expression. Reciprocally, mild overexpression of Sec16A or p115 in Hec1B cells increased the activation of IFNβ, ISG56 and NF-κB -dependent promoters following viral infection and ectopic expression of MAVS and Tank-binding kinase-1 (TBK1). In line with these results, TRAF3 was found enriched in immunocomplexes composed of p115, Sec16A and TBK1 upon infection. Hence, we propose a model where dsDNA and dsRNA sensing induces the formation of membrane-bound compartments originating from the Golgi, which mediate the dynamic association of TRAF3 with MAVS leading to an optimal induction of innate immune responses.
Journal of Cell Science | 2013
Cecilia H. Fernández-Espartero; Damien Ramel; Marganit Farago; Marianne Malartre; Carlos M. Luque; Shiran Limanovich; Shulamit Katzav; Gregory Emery; María D. Martín-Bermudo
Summary Guided cell migration is a key mechanism for cell positioning in morphogenesis. The current model suggests that the spatially controlled activation of receptor tyrosine kinases (RTKs) by guidance cues limits Rac activity at the leading edge, which is crucial for establishing and maintaining polarized cell protrusions at the front. However, little is known about the mechanisms by which RTKs control the local activation of Rac. Here, using a multidisciplinary approach, we identify the GTP exchange factor (GEF) Vav as a key regulator of Rac activity downstream of RTKs in a developmentally regulated cell migration event, that of the Drosophila border cells (BCs). We show that elimination of the vav gene impairs BC migration. Live imaging analysis reveals that vav is required for the stabilization and maintenance of protrusions at the front of the BC cluster. In addition, activation of the PDGF/VEGF-related receptor (PVR) by its ligand the PDGF/PVF1 factor brings about activation of Vav protein by direct interaction with the intracellular domain of PVR. Finally, FRET analyses demonstrate that Vav is required in BCs for the asymmetric distribution of Rac activity at the front. Our results unravel an important role for the Vav proteins as signal transducers that couple signalling downstream of RTKs with local Rac activation during morphogenetic movements.
Cell Cycle | 2016
Peng Wang; Myreille Larouche; Karine Normandin; David Kachaner; Haytham Mehsen; Gregory Emery; Vincent Archambault
ABSTRACT Entry into mitosis requires the phosphorylation of multiple substrates by cyclin B-Cdk1, while exit from mitosis requires their dephosphorylation, which depends largely on the phosphatase PP2A in complex with its B55 regulatory subunit (Tws in Drosophila). At mitotic entry, cyclin B-Cdk1 activates the Greatwall kinase, which phosphorylates Endosulfine proteins, thereby activating their ability to inhibit PP2A-B55 competitively. The inhibition of PP2A-B55 at mitotic entry facilitates the accumulation of phosphorylated Cdk1 substrates. The coordination of these enzymes involves major changes in their localization. In interphase, Gwl is nuclear while PP2A-B55 is cytoplasmic. We recently showed that Gwl suddenly relocalizes from the nucleus to the cytoplasm in prophase, before nuclear envelope breakdown and that this controlled localization of Gwl is required for its function. We and others have shown that phosphorylation of Gwl by cyclin B-Cdk1 at multiple sites is required for its nuclear exclusion, but the precise mechanisms remained unclear. In addition, how Gwl returns to its nuclear localization was not explored. Here we show that cyclin B-Cdk1 directly inactivates a Nuclear Localization Signal in the central region of Gwl. This phosphorylation facilitates the cytoplasmic retention of Gwl, which is exported to the cytoplasm in a Crm1-dependent manner. In addition, we show that PP2A-Tws promotes the return of Gwl to its nuclear localization during cytokinesis. Our results indicate that the cyclic changes in Gwl localization at mitotic entry and exit are directly regulated by the antagonistic cyclin B-Cdk1 and PP2A-Tws enzymes.
Communicative & Integrative Biology | 2013
Gregory Emery; Damien Ramel
Cell migration is an important process involved in developmental events and in pathologies such as cancer. Cell migration can be classified into two types: individual and collective cell movements. Compared with individual migration, collective cell migration is less understood and has drawn increasing attention lately because of its emerging role in cancer spreading. We have recently established that Rab11 is absolutely required for spatial control of Rac1 activity through the control of cell-cell communication during collective movements (Ramel, et al. 2013). Moreover, we demonstrated that Rab11 acts through the control of Moesin activity. Here, we discuss how Rab11 and Moesin could cooperate to transfer forces from cell to cell in order to insure coordinated collective cell migration.
Developmental Biology | 2017
Nathalie Colombié; Valérie Choesmel-Cadamuro; Jennifer Series; Gregory Emery; Xiaobo Wang; Damien Ramel
Collective cell migration is involved in numerous processes both physiological, such as embryonic development, and pathological such as metastasis. Compared to single cell migration, collective motion requires cell behaviour coordination through an as-yet poorly understood but critical cell-cell communication mechanism. Using Drosophila border cell migration, we show here that the small Rho GTPase Cdc42 regulates cell-cell communication. Indeed, we demonstrate that Cdc42 controls protrusion formation in a cell non-autonomous manner. Moreover, we found that the endocytic small GTPase Rab11, controls Cdc42 localisation to the periphery of migrating border cell clusters. Accordingly, over-expression of Cdc42 in border cells rescues the loss of Rab11 function. In addition, we showed that Cdc42 acts upstream of Moesin, a cytoskeletal regulator known to function downstream of rab11. Thus, our study positions Cdc42 as a new key player in cell-cell communication, acting downstream of Rab11.
Communicative & Integrative Biology | 2012
Khaled Ben El Kadhi; Gregory Emery; Sebastien Carreno
Inositides are intrinsic components of cell membranes that regulate a wide variety of cellular functions. PtdIns(4,5)P2, one of the most abundant phosphoinositides, is restricted at the plasma membrane where it regulates numerous functions including cell division. We have recently established that the Drosophila inositol 5-phosphatase, dOCRL, is essential for cytokinesis, the last step of cell division (Ben El Kadhi et al. 2011).8 We demonstrated that dOCRL is required for the dephosphorylation of PtdIns(4,5)P2 at the surface of endosomes, resulting in the restriction of this phosphoinositide to the cell cortex during cytokinesis. dOCRL is the Drosophila ortholog of human OCRL1, a PtdIns(4,5)P2 phosphatase mutated in the X-linked disorder oculocerebrorenal Lowe syndrome. Here, we discuss the relevance of our findings with reference to the role of human OCRL1 in non-pathological and pathological conditions.