Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory F. de Souza is active.

Publication


Featured researches published by Gregory F. de Souza.


Global Biogeochemical Cycles | 2012

Southern Ocean control of silicon stable isotope distribution in the deep Atlantic Ocean

Gregory F. de Souza; Ben C. Reynolds; Joerg Rickli; Martin Frank; Mak A. Saito; Loes J. A. Gerringa; Bernard Bourdon

The fractionation of silicon (Si) stable isotopes by biological activity in the surface ocean makes the stable isotope composition of silicon (delta Si-30) dissolved in seawater a sensitive tracer of the oceanic biogeochemical Si cycle. We present a high-precision dataset that characterizes the delta Si-30 distribution in the deep Atlantic Ocean from Denmark Strait to Drake Passage, documenting strong meridional and smaller, but resolvable, vertical delta Si-30 gradients. We show that these gradients are related to the two sources of deep and bottom waters in the Atlantic Ocean: waters of North Atlantic and Nordic origin carry a high delta(30)Sisignature of >=+1.7 parts per thousand into the deep Atlantic, while Antarctic Bottom Water transports Si with a low delta Si-30 value of around +1.2 parts per thousand. The deep Atlantic delta Si-30 distribution is thus governed by the quasi-conservative mixing of Si from these two isotopically distinct sources. This disparity in Si isotope composition between the North Atlantic and Southern Ocean is in marked contrast to the homogeneity of the stable nitrogen isotope composition of deep ocean nitrate (delta N-15-NO3). We infer that the meridional delta Si-30 gradient derives from the transport of the high delta Si-30 signature of Southern Ocean intermediate/mode waters into the North Atlantic by the upper return path of the meridional overturning circulation (MOC). The basin-scale deep Atlantic delta Si-30 gradient thus owes its existence to the interaction of the physical circulation with biological nutrient uptake at high southern latitudes, which fractionates Si isotopes between the abyssal and intermediate/mode waters formed in the Southern Ocean.


Journal of Physical Oceanography | 2015

Role of Mesoscale Eddies in Cross-Frontal Transport of Heat and Biogeochemical Tracers in the Southern Ocean

Carolina O. Dufour; Stephen M. Griffies; Gregory F. de Souza; Ivy Frenger; Adele K. Morrison; Jaime B. Palter; Jorge L. Sarmiento; Eric D. Galbraith; John P. Dunne; Whit G. Anderson; Richard D. Slater

AbstractThis study examines the role of processes transporting tracers across the Polar Front (PF) in the depth interval between the surface and major topographic sills, which this study refers to as the “PF core.” A preindustrial control simulation of an eddying climate model coupled to a biogeochemical model [GFDL Climate Model, version 2.6 (CM2.6)– simplified version of the Biogeochemistry with Light Iron Nutrients and Gas (miniBLING) 0.1° ocean model] is used to investigate the transport of heat, carbon, oxygen, and phosphate across the PF core, with a particular focus on the role of mesoscale eddies. The authors find that the total transport across the PF core results from a ubiquitous Ekman transport that drives the upwelled tracers to the north and a localized opposing eddy transport that induces tracer leakages to the south at major topographic obstacles. In the Ekman layer, the southward eddy transport only partially compensates the northward Ekman transport, while below the Ekman layer, the sout...


Journal of Advances in Modeling Earth Systems | 2015

Complex functionality with minimal computation: Promise and pitfalls of reduced‐tracer ocean biogeochemistry models

Eric D. Galbraith; John P. Dunne; Anand Gnanadesikan; Richard D. Slater; Jorge L. Sarmiento; Carolina O. Dufour; Gregory F. de Souza; Daniele Bianchi; Mariona Claret; Keith B. Rodgers; Seyedehsafoura Sedigh Marvasti

Earth System Models increasingly include ocean biogeochemistry models in order to predict changes in ocean carbon storage, hypoxia, and biological productivity under climate change. However, state-of-the-art ocean biogeochemical models include many advected tracers, that significantly increase the computational resources required, forcing a trade-off with spatial resolution. Here, we compare a state-of-the art model with 30 prognostic tracers (TOPAZ) with two reduced-tracer models, one with 6 tracers (BLING), and the other with 3 tracers (miniBLING). The reduced-tracer models employ parameterized, implicit biological functions, which nonetheless capture many of the most important processes resolved by TOPAZ. All three are embedded in the same coupled climate model. Despite the large difference in tracer number, the absence of tracers for living organic matter is shown to have a minimal impact on the transport of nutrient elements, and the three models produce similar mean annual preindustrial distributions of macronutrients, oxygen, and carbon. Significant differences do exist among the models, in particular the seasonal cycle of biomass and export production, but it does not appear that these are necessary consequences of the reduced tracer number. With increasing CO2, changes in dissolved oxygen and anthropogenic carbon uptake are very similar across the different models. Thus, while the reduced-tracer models do not explicitly resolve the diversity and internal dynamics of marine ecosystems, we demonstrate that such models are applicable to a broad suite of major biogeochemical concerns, including anthropogenic change. These results are very promising for the further development and application of reduced-tracer biogeochemical models that incorporate “sub-ecosystem-scale” parameterizations.


Journal of Analytical Atomic Spectrometry | 2017

GEOTRACES Intercalibration of the Stable Silicon Isotope Composition of Dissolved Silicic Acid in Seawater

Patricia Grasse; Mark A. Brzezinski; Damien Cardinal; Gregory F. de Souza; Per Andersson; Ivia Closset; Zhimian Cao; Minhan Dai; Claudia Ehlert; Nicolas Estrade; Roger Francois; Martin Frank; Guibin Jiang; Janice L. Jones; Ellen Kooijman; Qian Liu; Dawei Lu; Katharina Pahnke; Emanuel Ponzevera; Melanie Schmitt; Xiaole Sun; Jill N. Sutton; François Thil; Dominique Weis; Florian Wetzel; Anyu Zhang; Jing Zhang; Zhouling Zhang

The first inter-calibration study of the stable silicon isotope composition of dissolved silicic acid in seawater, δ30Si(OH)4, is presented as a contribution to the international GEOTRACES program. Eleven laboratories from seven countries analyzed two seawater samples from the north Pacific subtropical gyre (Station ALOHA) collected at 300 m and at 1000 m water depth. Sampling depths were chosen to obtain samples with a relatively low (9 μmol L-1, 300 m) and a relatively high (113 μmol L-1, 1000 m) silicic acid concentration as sample preparation differs for low- and high- concentration samples. Data for the 1000m water sample were not normally distributed so the median is used to represent the central tendency for the two samples. Median δ30Si(OH)4 values of +1.66 ‰ for the low-concentration sample and +1.25 ‰ for the high-concentration sample were obtained. Agreement among laboratories is overall considered very good; however, small but statistically significant differences among the mean isotope values obtained by different laboratories were detected likely reflecting interlaboratory differences in chemical preparation including pre-concentration and purification methods together with different volumes of seawater volume analyzed, and the use of different mass spectrometers including the Neptune MC-ICP-MS (Thermo Fisher™, Germany), the Nu Plasma MC-ICP-MS (Nu Instruments™, Wrexham, UK), and the Finnigan™ (now Thermo Fisher™, Germany) MAT 252 IRMS. Future studies analyzing δ30Si(OH)4 in seawater should also analyze and report values for these same two reference waters in order to facilitate comparison of data generated among and within laboratories over time.


Acta Geochimica | 2017

The oceanic cycles of the transition metals and their isotopes

Derek Vance; Corey Archer; Susan H. Little; Michael Köbberich; Gregory F. de Souza

The stable isotope systems of the transition metals potentially provide constraints on the current and past operation of the biological pump, and on the state of ocean redox in Earth history. Here we focus on two exemplar metals, nickel (Ni) and zinc (Zn). The oceanic dissolved pool of both elements is isotopically heavier than the known inputs, implying an output with light isotope compositions. The modern oceanic cycle of both these elements is dominated by biological uptake into photosynthesised organic matter and output to sediment. It is increasingly clear, however, that such uptake is associated with only very minor isotope fractionation. We suggest that the isotopic balance is instead closed by the sequestration of light isotopes to sulphide in anoxic and organic-rich sediments, so that it is ocean chemistry that controls these isotope systems, and suggesting a different but equally interesting array of questions in Earth history that can be addressed with these systems.


Frontiers of Earth Science in China | 2018

A review of the stable isotope bio-geochemistry of the global silicon cycle and its associated trace elements

Jill N. Sutton; Luc André; Damien Cardinal; Daniel J. Conley; Gregory F. de Souza; Jonathan R. Dean; Justin P. Dodd; Claudia Ehlert; Michael J. Ellwood; Patrick J. Frings; Patricia Grasse; Katharine R. Hendry; Melanie J. Leng; Panagiotis Michalopoulos; Virginia Panizzo; George E. A. Swann

Silicon (Si) is the second most abundant element in the Earth’s crust and is an important nutrient in the ocean. The global Si cycle plays a critical role in regulating primary productivity and carbon cycling on the continents and in the oceans. Development of the analytical tools used to study the sources, sinks, and fluxes of the global Si cycle (e.g., elemental and stable isotope ratio data for Ge, Si, Zn, etc.) have recently led to major advances in our understanding of the mechanisms and processes that constrain the cycling of Si in the modern environment and in the past. Here, we provide background on the geochemical tools that are available for studying the Si cycle and highlight our current understanding of the marine, freshwater and terrestrial systems. We place emphasis on the geochemistry (e.g., Al/Si, Ge/Si, Zn/Si, δ13 C, δ15 N, δ18 O, δ30 Si) of dissolved and biogenic Si, present case studies, such as the Silicic Acid Leakage Hypothesis, and discuss challenges associated with the development of these environmental proxies for the global Si cycle. We also discuss how each system within the global Si cycle might change over time (i.e., sources, sinks, and processes) and the potential technical and conceptual limitations that need to be considered for future studies.


Nature Geoscience | 2018

Gulf Stream rings as a source of iron to the North Atlantic subtropical gyre

Tim M. Conway; Jaime B. Palter; Gregory F. de Souza

Substantial amounts of nitrogen fixation occur in the North Atlantic subtropical gyre, due to the activity of cyanobacteria with high iron requirements. Iron is delivered to this region by dust from the Sahara Desert. However, this dust deposition is typically localized and episodic. Therefore, other sources of iron may also be important. Here, we report observations of dissolved iron concentrations in a Gulf Stream cold-core ring, which transported iron-rich water from near the continental slope into the subtropical gyre. We find that iron concentrations were elevated in the ring compared with subtropical waters, reflecting its source waters. Using iron data from these source waters and the identification of ring activity in satellite data, we estimate that cold-core rings provide a net flux of 0.3 ± 0.17 × 108 mol Fe yr−1 across the northwestern gyre edge, on the order of 15% of our median estimates of gyre-wide supply of iron by dust deposition. We suggest that iron supply from cold-core rings is an important source of iron to the northwestern gyre edge. We conclude that mesoscale ocean circulation features may play an important role in subtropical nutrient and carbon cycling.Gulf Stream rings may carry substantial amounts of iron to the North Atlantic subtropical gyre, according to measurements of iron concentrations in a ring and satellite data on ring activity.


Nature Communications | 2018

The silicon cycle impacted by past ice sheets

Jon R. Hawkings; Jade E. Hatton; Katharine R. Hendry; Gregory F. de Souza; Jemma L. Wadham; Ruza F. Ivanovic; Tyler J. Kohler; Marek Stibal; Alexander D. Beaton; Guillaume Lamarche-Gagnon; Andrew J. Tedstone; Mathis P. Hain; Elizabeth A. Bagshaw; Jennifer Pike; Martyn Tranter

Globally averaged riverine silicon (Si) concentrations and isotope composition (δ30Si) may be affected by the expansion and retreat of large ice sheets during glacial−interglacial cycles. Here we provide evidence of this based on the δ30Si composition of meltwater runoff from a Greenland Ice Sheet catchment. Glacier runoff has the lightest δ30Si measured in running waters (−0.25 ± 0.12‰), significantly lower than nonglacial rivers (1.25 ± 0.68‰), such that the overall decline in glacial runoff since the Last Glacial Maximum (LGM) may explain 0.06–0.17‰ of the observed ocean δ30Si rise (0.5–1.0‰). A marine sediment core proximal to Iceland provides further evidence for transient, low-δ30Si meltwater pulses during glacial termination. Diatom Si uptake during the LGM was likely similar to present day due to an expanded Si inventory, which raises the possibility of a feedback between ice sheet expansion, enhanced Si export to the ocean and reduced CO2 concentration in the atmosphere, because of the importance of diatoms in the biological carbon pump.The role ice sheets play in the silica cycle over glacial−interglacial timescales remains unclear. Here, based on the measurement of silica isotopes in Greenland meltwater and a nearby marine sediment core, the authors suggest expanding ice sheets considerably increased isotopically light silica in the oceans.


Acta Geochimica | 2017

Erratum to: The oceanic cycles of the transition metals and their isotopes

Derek Vance; Corey Archer; Susan H. Little; Michael Köbberich; Gregory F. de Souza

The article ‘‘The oceanic cycles of the transition metals and their isotopes’’ written by Derek Vance, Corey Archer, Susan H. Little, Michael Kobberich, Gregory F. de Souza was originally published electronically on the publisher’s internet portal (currently SpringerLink) on 3 May 2017 without open access. With the author(s)’ decision to opt for Open Choice, the copyright of the article changed on [8 August 2017] to The Author(s) 2017 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licen ses/by/4.0/) which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The original article was corrected.


Geochimica et Cosmochimica Acta | 2010

Evidence for mass-dependent isotopic fractionation of strontium in a glaciated granitic watershed

Gregory F. de Souza; Ben C. Reynolds; Mirjam Kiczka; Bernard Bourdon

Collaboration


Dive into the Gregory F. de Souza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John P. Dunne

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge