Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory F. Sonnenberg is active.

Publication


Featured researches published by Gregory F. Sonnenberg.


Nature Immunology | 2011

Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus

Laurel A. Monticelli; Gregory F. Sonnenberg; Michael C. Abt; Theresa Alenghat; Carly G.K. Ziegler; Travis A. Doering; Jill M. Angelosanto; Brian J. Laidlaw; Cliff Y Yang; Taheri Sathaliyawala; Masaru Kubota; Damian Turner; Joshua M. Diamond; Ananda W. Goldrath; Donna L. Farber; Ronald G. Collman; E. John Wherry; David Artis

Innate lymphoid cells (ILCs), a heterogeneous cell population, are critical in orchestrating immunity and inflammation in the intestine, but whether ILCs influence immune responses or tissue homeostasis at other mucosal sites remains poorly characterized. Here we identify a population of lung-resident ILCs in mice and humans that expressed the alloantigen Thy-1 (CD90), interleukin 2 (IL-2) receptor α-chain (CD25), IL-7 receptor α-chain (CD127) and the IL-33 receptor subunit T1-ST2. Notably, mouse ILCs accumulated in the lung after infection with influenza virus, and depletion of ILCs resulted in loss of airway epithelial integrity, diminished lung function and impaired airway remodeling. These defects were restored by administration of the lung ILC product amphiregulin. Collectively, our results demonstrate a critical role for lung ILCs in restoring airway epithelial integrity and tissue homeostasis after infection with influenza virus.


Nature Immunology | 2011

Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22

Gregory F. Sonnenberg; Lynette A. Fouser; David Artis

The maintenance of barrier function at exposed surfaces of the mammalian body is essential for limiting exposure to environmental stimuli, preventing systemic dissemination of commensal and pathogenic microbes and retaining normal homeostasis of the entire body. Indeed, dysregulated barrier function is associated with many infectious and inflammatory diseases, including psoriasis, influenza, inflammatory bowel disease and human immunodeficiency virus, which collectively afflict millions of people worldwide. Studies have shown that interleukin 22 (IL-22) is expressed at barrier surfaces and that its expression is dysregulated in certain human diseases, which suggests a critical role in the maintenance of normal barrier homeostasis. Consistent with that, studies of mouse model systems have identified a critical role for signaling by IL-22 through its receptor (IL-22R) in the promotion of antimicrobial immunity, inflammation and tissue repair at barrier surfaces. In this review we will discuss how the expression of IL-22 and IL-22R is regulated, the functions of the IL-22–IL-22R pathway in regulating immunity, inflammation and tissue homeostasis, and the therapeutic potential of targeting this pathway in human disease.


Science | 2012

Innate Lymphoid Cells Promote Anatomical Containment of Lymphoid-Resident Commensal Bacteria

Gregory F. Sonnenberg; Laurel A. Monticelli; Theresa Alenghat; Thomas C. Fung; Natalie A. Hutnick; Jun Kunisawa; Naoko Shibata; Stephanie Grunberg; Rohini Sinha; Adam M. Zahm; Mélanie R. Tardif; Taheri Sathaliyawala; Masaru Kubota; Donna L. Farber; Ronald G. Collman; Abraham Shaked; Lynette A. Fouser; David B. Weiner; Philippe A. Tessier; Joshua R. Friedman; Hiroshi Kiyono; Frederic D. Bushman; Kyong-Mi Chang; David Artis

Protecting Against a Barrier Breach In order to coexist peacefully, a “firewall” exists that keeps the commensal bacteria that reside in our intestines and associated lymphoid tissue contained. Several diseases and infections, however, lead to a breach in this barrier, which leads to chronic inflammation and pathology. Sonnenberg et al. (p. 1321) found that in mice, innate lymphoid cells (ILCs) are critically important for the anatomical containment of commensal bacteria in an interleukin-22 (IL-22)–dependent manner. ILC depletion or blockade of IL-22 led to loss of bacterial containment and systemic inflammation. Lymphocytes prevent bacteria from spreading beyond gut-associated lymphoid tissues and causing systemic inflammation. The mammalian intestinal tract is colonized by trillions of beneficial commensal bacteria that are anatomically restricted to specific niches. However, the mechanisms that regulate anatomical containment remain unclear. Here, we show that interleukin-22 (IL-22)–producing innate lymphoid cells (ILCs) are present in intestinal tissues of healthy mammals. Depletion of ILCs resulted in peripheral dissemination of commensal bacteria and systemic inflammation, which was prevented by administration of IL-22. Disseminating bacteria were identified as Alcaligenes species originating from host lymphoid tissues. Alcaligenes was sufficient to promote systemic inflammation after ILC depletion in mice, and Alcaligenes-specific systemic immune responses were associated with Crohn’s disease and progressive hepatitis C virus infection in patients. Collectively, these data indicate that ILCs regulate selective containment of lymphoid-resident bacteria to prevent systemic inflammation associated with chronic diseases.


Immunity | 2011

CD4+ Lymphoid Tissue-Inducer Cells Promote Innate Immunity in the Gut

Gregory F. Sonnenberg; Laurel A. Monticelli; M. Merle Elloso; Lynette A. Fouser; David Artis

Fetal CD4(+) lymphoid tissue inducer (LTi) cells play a critical role in the development of lymphoid tissues. Recent studies identified that LTi cells persist in adults and are related to a heterogeneous population of innate lymphoid cells that have been implicated in inflammatory responses. However, whether LTi cells contribute to protective immunity remains poorly defined. We demonstrate that after infection with Citrobacter rodentium, CD4(+) LTi cells were a dominant source of interleukin-22 (IL-22) early during infection. Infection-induced CD4(+) LTi cell responses were IL-23 dependent, and ablation of IL-23 impaired innate immunity. Further, depletion of CD4(+) LTi cells abrogated infection-induced expression of IL-22 and antimicrobial peptides, resulting in exacerbated host mortality. LTi cells were also found to be essential for host protective immunity in lymphocyte-replete hosts. Collectively these data demonstrate that adult CD4(+) LTi cells are a critical source of IL-22 and identify a previously unrecognized function for CD4(+) LTi cells in promoting innate immunity in the intestine.


Nature | 2013

Innate lymphoid cells regulate CD4 + T-cell responses to intestinal commensal bacteria

Matthew R. Hepworth; Laurel A. Monticelli; Thomas C. Fung; Carly G.K. Ziegler; Stephanie Grunberg; Rohini Sinha; Adriana R. Mantegazza; Hak Ling Ma; Alison Crawford; Jill M. Angelosanto; E. John Wherry; Pandelakis A. Koni; Frederic D. Bushman; Charles O. Elson; Gérard Eberl; David Artis; Gregory F. Sonnenberg

Innate lymphoid cells (ILCs) are a recently characterized family of immune cells that have critical roles in cytokine-mediated regulation of intestinal epithelial cell barrier integrity. Alterations in ILC responses are associated with multiple chronic human diseases, including inflammatory bowel disease, implicating a role for ILCs in disease pathogenesis. Owing to an inability to target ILCs selectively, experimental studies assessing ILC function have predominantly used mice lacking adaptive immune cells. However, in lymphocyte-sufficient hosts ILCs are vastly outnumbered by CD4+ T cells, which express similar profiles of effector cytokines. Therefore, the function of ILCs in the presence of adaptive immunity and their potential to influence adaptive immune cell responses remain unknown. To test this, we used genetic or antibody-mediated depletion strategies to target murine ILCs in the presence of an adaptive immune system. We show that loss of retinoic-acid-receptor-related orphan receptor-γt-positive (RORγt+) ILCs was associated with dysregulated adaptive immune cell responses against commensal bacteria and low-grade systemic inflammation. Remarkably, ILC-mediated regulation of adaptive immune cells occurred independently of interleukin (IL)-17A, IL-22 or IL-23. Genome-wide transcriptional profiling and functional analyses revealed that RORγt+ ILCs express major histocompatibility complex class II (MHCII) and can process and present antigen. However, rather than inducing T-cell proliferation, ILCs acted to limit commensal bacteria-specific CD4+ T-cell responses. Consistent with this, selective deletion of MHCII in murine RORγt+ ILCs resulted in dysregulated commensal bacteria-dependent CD4+ T-cell responses that promoted spontaneous intestinal inflammation. These data identify that ILCs maintain intestinal homeostasis through MHCII-dependent interactions with CD4+ T cells that limit pathological adaptive immune cell responses to commensal bacteria.


Science Translational Medicine | 2013

TSLP Elicits IL-33–Independent Innate Lymphoid Cell Responses to Promote Skin Inflammation

Brian S. Kim; Mark C. Siracusa; Steven A. Saenz; Mario Noti; Laurel A. Monticelli; Gregory F. Sonnenberg; Matthew R. Hepworth; Abby S. Van Voorhees; Michael R. Comeau; David Artis

Group 2 innate lymphoid cells are essential to the pathogenesis of atopic dermatitis–like disease in a TSLP-dependent, IL-33–independent manner. Immune Cell Activity at the Skin Barrier The skin acts like soft armor, protecting the body from disease and environmental insults. In atopic dermatitis (AD), this barrier is disrupted, leading to inflammation. The role of various immune cells in this chronic disease has not been clear. Now, Kim and colleagues identify a subset of innate lymphoid cells (ILCs) in both human and mouse skin that contribute to disease pathogenesis. ILCs have been reported in inflamed nasal polyps in people, as well as in inflamed lungs in mice. Hypothesizing that they also play a role in skin inflammation, Kim et al. analyzed cells isolated from the skin tissue of healthy control subjects and from the lesions of AD patients. There were more Lin− CD25+ IL-33R+ RORγt− group 2 ILCs (ILC2s) in the lesions of AD patients. In healthy mouse skin, the authors identified a similar ILC2 population. AD in humans is linked to cytokines interleukin-33 (IL-33), IL-25, and thymic stromal lymphopoietin (TSLP) in the skin. To this end, the authors investigated in mice whether the ILC2s played a role in inflammation at the skin barrier and if they were dependent on these cytokines. In a mouse model of AD, Kim et al. noted that ILC2s were increased and that AD pathogenesis was initiated independently of adaptive immunity and RORγt+ cells (a marker of group 3 ILCs). The mechanism was also independent of IL-25 and IL-33—which are normally implicated in group 2 ILC responses—yet dependent on TSLP. Depletion of the ILCs attenuated AD-like dermatitis in mice. Group 2 ILCs have not yet been described in skin barrier function in humans. In these studies, Kim and colleagues show that ILC2s are always present in healthy skin, but accumulate in AD lesions and function by a mechanism that contrasts what has been reported in lungs and intestine. Future functional studies will be needed for human ILC2s in skin inflammation, but these preliminary data in mice and humans suggest that targeting group 2 ILCs will be a viable target for treating AD and other allergic diseases. Innate lymphoid cells (ILCs) are a recently identified family of heterogeneous immune cells that can be divided into three groups based on their differential developmental requirements and expression of effector cytokines. Among these, group 2 ILCs produce the type 2 cytokines interleukin-5 (IL-5) and IL-13 and promote type 2 inflammation in the lung and intestine. However, whether group 2 ILCs reside in the skin and contribute to skin inflammation has not been characterized. We identify a population of skin-resident group 2 ILCs present in healthy human skin that are enriched in lesional human skin from atopic dermatitis (AD) patients. Group 2 ILCs were also found in normal murine skin and were critical for the development of inflammation in a murine model of AD-like disease. Remarkably, in contrast to group 2 ILC responses in the intestine and lung, which are critically regulated by IL-33 and IL-25, group 2 ILC responses in the skin and skin-draining lymph nodes were independent of these canonical cytokines but were critically dependent on thymic stromal lymphopoietin (TSLP). Collectively, these results demonstrate an essential role for IL-33– and IL-25–independent group 2 ILCs in promoting skin inflammation.


Nature | 2015

Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity

Jonathan R. Brestoff; Brian S. Kim; Steven A. Saenz; Rachel R. Stine; Laurel A. Monticelli; Gregory F. Sonnenberg; Joseph Thome; Donna L. Farber; Kabirullah Lutfy; Patrick Seale; David Artis

Obesity is an increasingly prevalent disease regulated by genetic and environmental factors. Emerging studies indicate that immune cells, including monocytes, granulocytes and lymphocytes, regulate metabolic homeostasis and are dysregulated in obesity. Group 2 innate lymphoid cells (ILC2s) can regulate adaptive immunity and eosinophil and alternatively activated macrophage responses, and were recently identified in murine white adipose tissue (WAT) where they may act to limit the development of obesity. However, ILC2s have not been identified in human adipose tissue, and the mechanisms by which ILC2s regulate metabolic homeostasis remain unknown. Here we identify ILC2s in human WAT and demonstrate that decreased ILC2 responses in WAT are a conserved characteristic of obesity in humans and mice. Interleukin (IL)-33 was found to be critical for the maintenance of ILC2s in WAT and in limiting adiposity in mice by increasing caloric expenditure. This was associated with recruitment of uncoupling protein 1 (UCP1)+ beige adipocytes in WAT, a process known as beiging or browning that regulates caloric expenditure. IL-33-induced beiging was dependent on ILC2s, and IL-33 treatment or transfer of IL-33-elicited ILC2s was sufficient to drive beiging independently of the adaptive immune system, eosinophils or IL-4 receptor signalling. We found that ILC2s produce methionine-enkephalin peptides that can act directly on adipocytes to upregulate Ucp1 expression in vitro and that promote beiging in vivo. Collectively, these studies indicate that, in addition to responding to infection or tissue damage, ILC2s can regulate adipose function and metabolic homeostasis in part via production of enkephalin peptides that elicit beiging.


Journal of Experimental Medicine | 2010

Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A

Gregory F. Sonnenberg; Meera G. Nair; Thomas J. Kirn; Colby Zaph; Lynette A. Fouser; David Artis

IL-22 has both proinflammatory and tissue-protective properties depending on the context in which it is expressed. However, the factors that influence the functional outcomes of IL-22 expression remain poorly defined. We demonstrate that after administration of a high dose of bleomycin that induces acute tissue damage and airway inflammation and is lethal to wild-type (WT) mice, Th17 cell–derived IL-22 and IL-17A are expressed in the lung. Bleomycin-induced disease was ameliorated in Il22−/− mice or after anti–IL-22 monoclonal antibody (mAb) treatment of WT mice, indicating a proinflammatory/pathological role for IL-22 in airway inflammation. However, despite increased bleomycin-induced IL-22 production, Il17a−/− mice were protected from airway inflammation, suggesting that IL-17A may regulate the expression and/or proinflammatory properties of IL-22. Consistent with this, IL-17A inhibited IL-22 production by Th17 cells, and exogenous administration of IL-22 could only promote airway inflammation in vivo by acting in synergy with IL-17A. Anti–IL-22 mAb was delivered to Il17a−/− mice and was found to exacerbate bleomycin-induced airway inflammation, indicating that IL-22 is tissue protective in the absence of IL-17A. Finally, in an in vitro culture system, IL-22 administration protected airway epithelial cells from bleomycin-induced apoptosis, and this protection was reversed after coadministration of IL-17A. These data identify that IL-17A can regulate the expression, proinflammatory properties, and tissue-protective functions of IL-22, and indicate that the presence or absence of IL-17A governs the proinflammatory versus tissue-protective properties of IL-22 in a model of airway damage and inflammation.


Nature Medicine | 2015

Innate lymphoid cells in the initiation, regulation and resolution of inflammation

Gregory F. Sonnenberg; David Artis

A previously unappreciated cell type of the innate immune system, termed innate lymphoid cells (ILCs), has been characterized in mice and humans and found to influence the induction, regulation and resolution of inflammation. ILCs have an important role in these processes in mouse models of infection, inflammation and tissue repair. Further, disease-association studies in defined patient populations have identified significant alterations in ILC responses, suggesting a potential role for these cell populations in human health and disease. In this review we discuss the emerging family of ILCs, the role of ILCs in inflammation, and how current or novel therapeutic strategies could be used to selectively modulate ILC responses and limit chronic inflammatory diseases.


Science | 2015

Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4⁺ T cells.

Matthew R. Hepworth; Thomas C. Fung; Samuel Masur; Judith R. Kelsen; Fiona M. McConnell; Juan Dubrot; David R. Withers; Stéphanie Hugues; Michael A. Farrar; Walter Reith; Gérard Eberl; Robert N. Baldassano; Terri M. Laufer; Charles O. Elson; Gregory F. Sonnenberg

Innate lymphoid cells keep gut T cells in check Trillions of bacteria inhabit our guts. So do many types of immune cells, including T cells, which might be expected to attack these bacteria. How, then, do our bodies manage to keep the peace? Working in mice, Hepworth et al. report one such mechanism. A population of immune cells, called innate lymphoid cells, directly killed CD4+ T cells that react to commensal gut microbes. Some of the specifics of this process parallel how the immune system keeps developing self-reactive T cells in check in the thymus. Furthermore, this peacekeeping process may be disrupted in children with inflammatory bowel disease. Science, this issue p. 1031 Innate lymphoid cells delete commensal bacteria–specific CD4+ T cells from the intestine in mice. Inflammatory CD4+ T cell responses to self or commensal bacteria underlie the pathogenesis of autoimmunity and inflammatory bowel disease (IBD), respectively. Although selection of self-specific T cells in the thymus limits responses to mammalian tissue antigens, the mechanisms that control selection of commensal bacteria–specific T cells remain poorly understood. Here, we demonstrate that group 3 innate lymphoid cell (ILC3)–intrinsic expression of major histocompatibility complex class II (MHCII) is regulated similarly to thymic epithelial cells and that MHCII+ ILC3s directly induce cell death of activated commensal bacteria–specific T cells. Further, MHCII on colonic ILC3s was reduced in pediatric IBD patients. Collectively, these results define a selection pathway for commensal bacteria–specific CD4+ T cells in the intestine and suggest that this process is dysregulated in human IBD.

Collaboration


Dive into the Gregory F. Sonnenberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theresa Alenghat

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carly G.K. Ziegler

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Judith R. Kelsen

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Robert N. Baldassano

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Thomas C. Fung

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge