Gregory Fegan
Kenya Medical Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregory Fegan.
Infection and Immunity | 2008
Faith Osier; Gregory Fegan; Spencer D. Polley; Linda M. Murungi; Federica Verra; Kevin K. A. Tetteh; Brett Lowe; Tabitha W. Mwangi; Peter C. Bull; Alan W. Thomas; David R. Cavanagh; Jana S. McBride; David E. Lanar; Margaret J. Mackinnon; David J. Conway; Kevin Marsh
ABSTRACT Individuals living in areas where malaria is endemic are repeatedly exposed to many different malaria parasite antigens. Studies on naturally acquired antibody-mediated immunity to clinical malaria have largely focused on the presence of responses to individual antigens and their associations with decreased morbidity. We hypothesized that the breadth (number of important targets to which antibodies were made) and magnitude (antibody level measured in a random serum sample) of the antibody response were important predictors of protection from clinical malaria. We analyzed naturally acquired antibodies to five leading Plasmodium falciparum merozoite-stage vaccine candidate antigens, and schizont extract, in Kenyan children monitored for uncomplicated malaria for 6 months (n = 119). Serum antibody levels to apical membrane antigen 1 (AMA1) and merozoite surface protein antigens (MSP-1 block 2, MSP-2, and MSP-3) were inversely related to the probability of developing malaria, but levels to MSP-119 and erythrocyte binding antigen (EBA-175) were not. The risk of malaria was also inversely associated with increasing breadth of antibody specificities, with none of the children who simultaneously had high antibody levels to five or more antigens experiencing a clinical episode (17/119; 15%; P = 0.0006). Particular combinations of antibodies (AMA1, MSP-2, and MSP-3) were more strongly predictive of protection than others. The results were validated in a larger, separate case-control study whose end point was malaria severe enough to warrant hospital admission (n = 387). These findings suggest that under natural exposure, immunity to malaria may result from high titers antibodies to multiple antigenic targets and support the idea of testing combination blood-stage vaccines optimized to induce similar antibody profiles.
PLOS ONE | 2011
Julie Makani; Sharon E. Cox; Deogratius Soka; Albert N. Komba; Julie Oruo; Hadija Mwamtemi; Pius Magesa; Stella Rwezaula; Elineema Meda; Josephine Mgaya; Brett Lowe; David Muturi; David J. Roberts; Thomas N. Williams; Kisali Pallangyo; Jesse Kitundu; Gregory Fegan; Fenella J. Kirkham; Kevin Marsh; Charles R. Newton
Background The World Health Organization has declared Sickle Cell Anemia (SCA) a public health priority. There are 300,000 births/year, over 75% in Africa, with estimates suggesting that 6 million Africans will be living with SCA if average survival reaches half the African norm. Countries such as United States of America and United Kingdom have reduced SCA mortality from 3 to 0.13 per 100 person years of observation (PYO), with interventions such as newborn screening, prevention of infections and comprehensive care, but implementation of interventions in African countries has been hindered by lack of locally appropriate information. The objective of this study was to determine the incidence and factors associated with death from SCA in Dar-es-Salaam. Methods and Findings A hospital-based cohort study was conducted, with prospective surveillance of 1,725 SCA patients recruited from 2004 to 2009, with 209 (12%) lost to follow up, while 86 died. The mortality rate was 1.9 (95%CI 1.5, 2.9) per 100 PYO, highest under 5-years old [7.3 (4.8–11.0)], adjusting for dates of birth and study enrollment. Independent risk factors, at enrollment to the cohort, predicting death were low hemoglobin (<5 g/dL) [3.8 (1.8–8.2); pu200a=u200a0.001] and high total bilirubin (≥102 µmol/L) [1.7 (1.0–2.9); pu200a=u200a0.044] as determined by logistic regression. Conclusions Mortality in SCA in Africa is high, with the most vulnerable period being under 5-years old. This is most likely an underestimate, as this was a hospital cohort and may not have captured SCA individuals with severe disease who died in early childhood, those with mild disease who are undiagnosed or do not utilize services at health facilities. Prompt and effective treatment for anemia in SCA is recommended as it is likely to improve survival. Further research is required to determine the etiology, pathophysiology and the most appropriate strategies for management of anemia in SCA.
PLOS ONE | 2009
Rachel Ochola; Charles J. Sande; Gregory Fegan; Paul D. Scott; Graham F. Medley; Patricia A. Cane; D. James Nokes
Background Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infection in infants. The rate of decay of RSV-specific maternal antibodies (RSV-matAb), the factors affecting cord blood levels, and the relationship between these levels and protection from infection are poorly defined. Methods A birth cohort (nu200a=u200a635) in rural Kenya, was studied intensively to monitor infections and describe age-related serological characteristics. RSV specific IgG antibody (Ab) in serum was measured by the enzyme linked immunosorbent assay (ELISA) in cord blood, consecutive samples taken 3 monthly, and in paired acute and convalescent samples. A linear regression model was used to calculate the rate of RSV-matAb decline. The effect of risk factors on cord blood titres was investigated. Results The half-life of matAb in the Kenyan cohort was calculated to be 79 days (95% confidence limits (CL): 76–81 days). Ninety seven percent of infants were born with RSV-matAb. Infants who subsequently experienced an infection in early life had significantly lower cord titres of anti-RSV Ab in comparison to infants who did not have any incident infection in the first 6 months (Pu200a=u200a0.011). RSV infections were shown to have no effect on the rate of decay of RSV-matAb. Conclusion Maternal-specific RSV Ab decline rapidly following birth. However, we provide evidence of protection against severe disease by RSV-matAb during the first 6–7 months. This suggests that boosting maternal-specific Ab by RSV vaccination may be a useful strategy to consider.
BMC Public Health | 2006
Moses Ndiritu; Karen D. Cowgill; Amina Ismail; Salome Chiphatsi; Tatu Kamau; Gregory Fegan; Daniel R. Feikin; Charles R. Newton; J. Anthony G. Scott
BackgroundKenya introduced a pentavalent vaccine including the DTP, Haemophilus influenzae type b and hepatitis b virus antigens in Nov 2001 and strengthened immunization services. We estimated immunization coverage before and after introduction, timeliness of vaccination and risk factors for failure to immunize in Kilifi district, Kenya.MethodsIn Nov 2002 we performed WHO cluster-sample surveys of >200 children scheduled for vaccination before or after introduction of pentavalent vaccine. In Mar 2004 we conducted a simple random sample (SRS) survey of 204 children aged 9–23 months. Coverage was estimated by inverse Kaplan-Meier survival analysis of vaccine-card and mothers recall data and corroborated by reviewing administrative records from national and provincial vaccine stores. The contribution to timely immunization of distance from clinic, seasonal rainfall, mothers age, and family size was estimated by a proportional hazards model.ResultsImmunization coverage for three DTP and pentavalent doses was 100% before and 91% after pentavalent vaccine introduction, respectively. By SRS survey, coverage was 88% for three pentavalent doses. The median age at first, second and third vaccine dose was 8, 13 and 18 weeks. Vials dispatched to Kilifi District during 2001–2003 would provide three immunizations for 92% of the birth cohort. Immunization rate ratios were reduced with every kilometre of distance from home to vaccine clinic (HR 0.95, CI 0.91–1.00), rainy seasons (HR 0.73, 95% CI 0.61–0.89) and family size, increasing progressively up to 4 children (HR 0.55, 95% CI 0.41–0.73).ConclusionVaccine coverage was high before and after introduction of pentavalent vaccine, but most doses were given late. Coverage is limited by seasonal factors and family size.
Science Translational Medicine | 2014
Faith Osier; Margaret J. Mackinnon; Cécile Crosnier; Gregory Fegan; Gathoni Kamuyu; Madushi Wanaguru; Edna Ogada; Brian McDade; Julian C. Rayner; Gavin J. Wright; Kevin Marsh
Uncharacterized proteins from the merozoite stage of Plasmodium falciparum provide new antigens for malaria blood-stage vaccine development. Combine and Conquer Malaria vaccine development has been hampered by the inability to produce high-quality recombinant proteins for immunological studies. In a new study by Osier and colleagues, this constraint was overcome by systematically testing a library of biochemically active malaria parasite proteins in Kenyan children naturally exposed to malaria. The authors identified new proteins with superior or equivalent potential protective efficacy compared to established vaccine candidates. Moreover, cumulative responses to combinations of 5 of the top 10 ranked antigens correlated with 100% protection against malaria. These data suggest that there are potentially many more vaccine targets and that effective vaccination may be achieved through combinations of the best of these. An effective blood-stage vaccine against Plasmodium falciparum remains a research priority, but the number of antigens that have been translated into multicomponent vaccines for testing in clinical trials remains limited. Investigating the large number of potential targets found in the parasite proteome has been constrained by an inability to produce natively folded recombinant antigens for immunological studies. We overcame these constraints by generating a large library of biochemically active merozoite surface and secreted full-length ectodomain proteins. We then systematically examined the antibody reactivity against these proteins in a cohort of Kenyan children (n = 286) who were sampled at the start of a malaria transmission season and prospectively monitored for clinical episodes of malaria over the ensuing 6 months. We found that antibodies to previously untested or little-studied proteins had superior or equivalent potential protective efficacy to the handful of current leading malaria vaccine candidates. Moreover, cumulative responses to combinations comprising 5 of the 10 top-ranked antigens, including PF3D7_1136200, MSP2, RhopH3, P41, MSP11, MSP3, PF3D7_0606800, AMA1, Pf113, and MSRP1, were associated with 100% protection against clinical episodes of malaria. These data suggest not only that there are many more potential antigen candidates for the malaria vaccine development pipeline but also that effective vaccination may be achieved by combining a selection of these antigens.
PLOS ONE | 2008
Abdisalan M. Noor; Grainne M. Moloney; Mohamed Borle; Gregory Fegan; Tanya Shewchuk; Robert W. Snow
Background There have been resurgent efforts in Africa to estimate the public health impact of malaria control interventions such as insecticide treated nets (ITNs) following substantial investments in scaling-up coverage in the last five years. Little is known, however, on the effectiveness of ITN in areas of Africa that support low transmission. This hinders the accurate estimation of impact of ITN use on disease burden and its cost-effectiveness in low transmission settings. Methods and Principal Findings Using a stratified two-stage cluster sample design, four cross-sectional studies were undertaken between March-June 2007 across three livelihood groups in an area of low intensity malaria transmission in South Central Somalia. Information on bed net use; age; and sex of all participants were recorded. A finger prick blood sample was taken from participants to examine for parasitaemia. Mantel-Haenzel methods were used to measure the effect of net use on parasitaemia adjusting for livelihood; age; and sex. A total of 10,587 individuals of all ages were seen of which 10,359 provided full information. Overall net use and parasite prevalence were 12.4% and 15.7% respectively. Age-specific protective effectiveness (PE) of bed net ranged from 39% among <5 years to 72% among 5–14 years old. Overall PE of bed nets was 54% (95% confidence interval 44%–63%) after adjusting for livelihood; sex; and age. Conclusions and Significance Bed nets confer high protection against parasite infection in South Central Somalia. In such areas where baseline transmission is low, however, the absolute reductions in parasitaemia due to wide-scale net use will be relatively small raising questions on the cost-effectiveness of covering millions of people living in such settings in Africa with nets. Further understanding of the progress of disease upon infection against the cost of averting its consequent burden in low transmission areas of Africa is therefore required.
PLOS ONE | 2008
Tabitha W. Mwangi; Gregory Fegan; Thomas N. Williams; Sam Kinyanjui; Robert W. Snow; Kevin Marsh
Background It may be assumed that patterns of clinical malaria in children of similar age under the same level of exposure would follow a Poisson distribution with no over-dispersion. Longitudinal studies that have been conducted over many years suggest that some children may experience more episodes of clinical malaria than would be expected. The aim of this study was to identify this group of children and investigate possible causes for this increased susceptibility. Methodology and Principal Findings Using Poisson regression, we chose a group of children whom we designated as ‘more susceptible’ to malaria from 373 children under 10 years of age who were followed up for between 3 to 5 years from 1998–2003. About 21% of the children were categorized as ‘more susceptible’ and although they contributed only 23% of the person-time of follow-up, they experienced 55% of total clinical malaria episodes. Children that were parasite negative at all cross-sectional survey were less likely to belong to this group [AORu200a=u200a0.09, (95% CI: 0.14–0.61), pu200a=u200a0.001]. Conclusions and Significance The pattern of clinical malaria episodes follows a negative binomial distribution. Use of lack of a clinical malaria episode in a certain time period as endpoints for intervention or immunological studies may not adequately distinguish groups who are more or less immune. It may be useful in such studies, in addition to the usual endpoint of the time to first episode, to include end points which take into account the total number of clinical episodes experienced per child.
British Journal of Haematology | 2009
Julie Makani; Fenella J. Kirkham; Albert N. Komba; T Ajala-Agbo; Godfrey Otieno; Gregory Fegan; Thomas N. Williams; Kevin Marsh; Charles R. Newton
High cerebral blood flow velocity (CBFv) and low haemoglobin oxygen saturation (SpO2) predict neurological complications in sickle cell anaemia (SCA) but any association is unclear. In a cross‐sectional study of 105 Kenyan children, mean CBFv was 120u2003±u200334·9u2003cm/s; 3 had conditional CBFv (170–199u2003cm/s) but none had abnormal CBFv (>200u2003cm/s). After adjustment for age and haematocrit, CBFv ≥150u2003cm/s was predicted by SpO2u2003≤u200395% and history of fever. Four years later, 10 children were lost to follow‐up, none had suffered neurological events and 11/95 (12%) had died, predicted by history of fever but not low SpO2. Natural history of SCA in Africa may be different from North America and Europe.
PLOS ONE | 2010
Ally Olotu; Gregory Fegan; Thomas N. Williams; Philip Sasi; Edna Ogada; Evasius Bauni; Juliana Wambua; Kevin Marsh; Steffen Borrmann; Philip Bejon
Background Febrile malaria is the most common clinical manifestation of P. falciparum infection, and is often the primary endpoint in clinical trials and epidemiological studies. Subjective and objective fevers are both used to define the endpoint, but have not been carefully compared, and the relative incidence of clinical malaria by active and passive case detection is unknown. Methods We analyzed data from cohorts under active and passive surveillance, including 19,462 presentations with fever and 5,551 blood tests for asymptomatic parasitaemia. A logistic regression model was used to calculate Malaria Attributable Fractions (MAFs) for various case definitions. Incidences of febrile malaria by active and passive surveillance were compared in a subset of children matched for age and location. Results Active surveillance identified three times the incidence of clinical malaria as passive surveillance in a subset of children matched for age and location. Objective fever (temperature≥37.5°C) gave consistently higher MAFs than case definitions based on subjective fever. Conclusion The endpoints from active and passive surveillance have high specificity, but the incidence of endpoints is lower on passive surveillance. Subjective fever had low specificity and should not be used in primary endpoint. Passive surveillance will reduce the power of clinical trials but may cost-effectively deliver acceptable sensitivity in studies of large populations.
PLOS ONE | 2010
Richard Idro; Samson Gwer; Thomas N. Williams; T. F. Otieno; Sophie Uyoga; Gregory Fegan; Piet A. Kager; Kathryn Maitland; Fenella J. Kirkham; Brian Neville; Charles R. Newton
Background There are conflicting reports on whether iron deficiency changes susceptibility to seizures. We examined the hypothesis that iron deficiency is associated with an increased risk of acute seizures in children in a malaria endemic area. Methods We recruited 133 children, aged 3–156 months, who presented to a district hospital on the Kenyan coast with acute seizures and frequency-matched these to children of similar ages but without seizures. We defined iron deficiency according to the presence of malarial infection and evidence of inflammation. In patients with malaria, we defined iron deficiency as plasma ferritin<30µg/ml if plasma C-reactive protein (CRP) was<50mg/ml or ferritin<273µg/ml if CRP≥50mg/ml, and in those without malaria, as ferritin<12µg/ml if CRP<10mg/ml or ferritin<30µg/ml if CRP≥10mg/ml. In addition, we performed a meta-analysis of case-control studies published in English between January 1966 and December 2009 and available through PUBMED that have examined the relationship between iron deficiency and febrile seizures in children. Results In our Kenyan case control study, cases and controls were similar, except more cases reported past seizures. Malaria was associated with two-thirds of all seizures. Eighty one (30.5%) children had iron deficiency. Iron deficiency was neither associated with an increased risk of acute seizures (45/133[33.8%] cases were iron deficient compared to 36/133[27.1%] controls, pu200a=u200a0.230) nor status epilepticus and it did not affect seizure semiology. Similar results were obtained when children with malaria, known to cause acute symptomatic seizures in addition to febrile seizures were excluded. However, in a meta-analysis that combined all eight case-control studies that have examined the association between iron deficiency and acute/febrile seizures to-date, iron deficiency, described in 310/1,018(30.5%) cases and in 230/1,049(21.9%) controls, was associated with a significantly increased risk of seizures, weighted OR 1.79(95%CI 1.03–3.09). Conclusions Iron deficiency is not associated with an increased risk of all acute seizures in children but of febrile seizures. Further studies should examine mechanisms involved and the implications for public health.