Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory Foltz is active.

Publication


Featured researches published by Gregory Foltz.


BMC Genomics | 2011

The SOX2 response program in glioblastoma multiforme: an integrated ChIP-seq, expression microarray, and microRNA analysis

Xuefeng Fang; Jae-Geun Yoon; Lisha Li; Wei Yu; Jiaofang Shao; Dasong Hua; Shu-Mei Zheng; Leroy Hood; David R. Goodlett; Gregory Foltz; Biaoyang Lin

BackgroundSOX2 is a key gene implicated in maintaining the stemness of embryonic and adult stem cells. SOX2 appears to re-activate in several human cancers including glioblastoma multiforme (GBM), however, the detailed response program of SOX2 in GBM has not yet been defined.ResultsWe show that knockdown of the SOX2 gene in LN229 GBM cells reduces cell proliferation and colony formation. We then comprehensively characterize the SOX2 response program by an integrated analysis using several advanced genomic technologies including ChIP-seq, microarray profiling, and microRNA sequencing. Using ChIP-seq technology, we identified 4883 SOX2 binding regions in the GBM cancer genome. SOX2 binding regions contain the consensus sequence wwTGnwTw that occurred 3931 instances in 2312 SOX2 binding regions. Microarray analysis identified 489 genes whose expression altered in response to SOX2 knockdown. Interesting findings include that SOX2 regulates the expression of SOX family proteins SOX1 and SOX18, and that SOX2 down regulates BEX1 (brain expressed X-linked 1) and BEX2 (brain expressed X-linked 2), two genes with tumor suppressor activity in GBM. Using next generation sequencing, we identified 105 precursor microRNAs (corresponding to 95 mature miRNAs) regulated by SOX2, including down regulation of miR-143, -145, -253-5p and miR-452. We also show that miR-145 and SOX2 form a double negative feedback loop in GBM cells, potentially creating a bistable system in GBM cells.ConclusionsWe present an integrated dataset of ChIP-seq, expression microarrays and microRNA sequencing representing the SOX2 response program in LN229 GBM cells. The insights gained from our integrated analysis further our understanding of the potential actions of SOX2 in carcinogenesis and serves as a useful resource for the research community.


Proceedings of the National Academy of Sciences of the United States of America | 2011

A CD133-related gene expression signature identifies an aggressive glioblastoma subtype with excessive mutations

Xiaowei Yan; Li Ma; Danielle Yi; Jae-Geun Yoon; Alan H. Diercks; Gregory Foltz; Nathan D. Price; Leroy Hood; Qiang Tian

Cancer cells are heterogeneous and, it has been proposed, fall into at least two classes: the tumor-initiating cancer stem cells (CSC) and the more differentiated tumor cells. The transmembrane protein CD133 has been widely used to isolate putative CSC populations in several cancer types, but its validity as a CSC marker and hence its clinical ramifications remain controversial. Here, we conducted transcriptomic profiling of sorted CD133+ and CD133− cells from human glioblastoma multiforme (GBM) and, by subtractive analysis, established a CD133 gene expression signature composed of 214 differentially expressed genes. Extensive computational comparisons with a compendium of published gene expression profiles reveal that the CD133 gene signature transcriptionally resembles human ES cells and in vitro cultured GBM stem cells, and this signature successfully distinguishes GBM from lower-grade gliomas. More importantly, the CD133 gene signature identifies an aggressive subtype of GBM seen in younger patients with shorter survival who bear excessive genomic mutations as surveyed through the Cancer Genome Atlas Network GBM mutation spectrum. Furthermore, the CD133 gene signature distinguishes higher-grade breast and bladder cancers from their lower-grade counterparts. Our systematic analysis provides molecular and genetic support for the stem cell-like nature of CD133+ cells and an objective means for evaluating cancer aggressiveness.


PLOS ONE | 2012

Silencing SOX2 Induced Mesenchymal-Epithelial Transition and Its Expression Predicts Liver and Lymph Node Metastasis of CRC Patients

Xu Han; Xuefeng Fang; Xiaoyan Lou; Dasong Hua; Wenchao Ding; Gregory Foltz; Leroy Hood; Ying Yuan; Biaoyang Lin

SOX2 is an important stem cell marker and plays important roles in development and carcinogenesis. However, the role of SOX2 in Epithelial-Mesenchymal Transition has not been investigated. We demonstrated, for the first time, that SOX2 is involved in the Epithelial-Mesenchymal Transition (EMT) process as knock downof SOX2 in colorectal cancer (CRC) SW620 cells induced a Mesenchymal-Epithelial Transition (MET) process with recognized changes in the expression of key genes involved in the EMT process including E-cadherin and vimentin. In addition, we provided a link between SOX2 activity and the WNT pathway by showing that knock down of SOX2 reduced the WNT pathway activity in colorectal cancer (CRC) cells. We further demonstrated that SOX2 is involved in cell migration and invasion in vitro and in metastasis in vivo for CRC cells, and that the process might be mediated through the MMP2 activity. Finally, an IHC analysis of 44 cases of colorectal cancer patients suggested that SOX2 is a prognosis marker for metastasis of colorectal cancers.


PLOS ONE | 2010

Massively Parallel Signature Sequencing and Bioinformatics Analysis Identifies Up-Regulation of TGFBI and SOX4 in Human Glioblastoma

Biaoyang Lin; Anup Madan; Jae-Geun Yoon; Xuefeng Fang; Xiaowei Yan; Taek-Kyun Kim; Daehee Hwang; Leroy Hood; Gregory Foltz

Background A comprehensive network-based understanding of molecular pathways abnormally altered in glioblastoma multiforme (GBM) is essential for developing effective therapeutic approaches for this deadly disease. Methodology/Principal Findings Applying a next generation sequencing technology, massively parallel signature sequencing (MPSS), we identified a total of 4535 genes that are differentially expressed between normal brain and GBM tissue. The expression changes of three up-regulated genes, CHI3L1, CHI3L2, and FOXM1, and two down-regulated genes, neurogranin and L1CAM, were confirmed by quantitative PCR. Pathway analysis revealed that TGF- β pathway related genes were significantly up-regulated in GBM tumor samples. An integrative pathway analysis of the TGF β signaling network identified two alternative TGF−β signaling pathways mediated by SOX4 (sex determining region Y-box 4) and TGFBI (Transforming growth factor beta induced). Quantitative RT-PCR and immunohistochemistry staining demonstrated that SOX4 and TGFBI expression is elevated in GBM tissues compared with normal brain tissues at both the RNA and protein levels. In vitro functional studies confirmed that TGFBI and SOX4 expression is increased by TGF- β stimulation and decreased by a specific inhibitor of TGF- β receptor 1 kinase. Conclusions/Significance Our MPSS database for GBM and normal brain tissues provides a useful resource for the scientific community. The identification of non-SMAD mediated TGF−β signaling pathways acting through SOX4 and TGFBI (GENE ID:7045) in GBM indicates that these alternative pathways should be considered, in addition to the canonical SMAD mediated pathway, in the development of new therapeutic strategies targeting TGF−β signaling in GBM. Finally, the construction of an extended TGF- β signaling network with overlaid gene expression changes between GBM and normal brain extends our understanding of the biology of GBM.


PLOS ONE | 2013

Expression and Functional Heterogeneity of Chemokine Receptors CXCR4 and CXCR7 in Primary Patient-Derived Glioblastoma Cells

Che Liu; Kien Pham; Defang Luo; Brent A. Reynolds; Parvinder Hothi; Gregory Foltz; Jeffrey K. Harrison

Glioblastoma (GBM) is the most common primary brain tumor in adults. The poor prognosis and minimally successful treatments of these tumors indicates a need to identify new therapeutic targets. Therapy resistance of GBMs is attributed to heterogeneity of the glioblastoma due to genetic alterations and functional subpopulations. Chemokine receptors CXCR4 and CXCR7 play important roles in progression of various cancers although the specific functions of the CXCL12−CXCR4−CXCR7 axis in GBM are less characterized. In this study we examined the expression and function of CXCR4 and CXCR7 in four primary patient-derived GBM cell lines of the proliferative subclass, investigating their roles in in vitro growth, migration, sphere and tube formation. CXCR4 and CXCR7 cell surface expression was heterogeneous both between and within each cell line examined, which was not reflected by RT-PCR analysis. Variable percentages of CXCR4+CXCR7− (CXCR4 single positive), CXCR4−CXCR7+ (CXCR7 single positive), CXCR4+CXCR7+ (double positive), and CXCR4−CXCR7− (double negative) subpopulations were evident across the lines examined. A subpopulation of slow cell cycling cells was enriched in CXCR4 and CXCR7. CXCR4+, CXCR7+, and CXCR4+/CXCR7+ subpopulations were able to initiate intracranial tumors in vivo. CXCL12 stimulated in vitro cell growth, migration, sphere formation and tube formation in some lines and, depending on the response, the effects were mediated by either CXCR4 or CXCR7. Collectively, our results indicate a high level of heterogeneity in both the surface expression and functions of CXCR4 and CXCR7 in primary human GBM cells of the proliferative subclass. Should targeting of CXCR4 and CXCR7 provide clinical benefits to GBM patients, a personalized treatment approach should be considered given the differential expression and functions of these receptors in GBM.


Proteomics | 2011

Landscape of the SOX2 protein-protein interactome.

Xuefeng Fang; Jae Geun Yoon; Lisha Li; Yihsuan S. Tsai; Shu Zheng; Leroy Hood; David R. Goodlett; Gregory Foltz; Biaoyang Lin

SOX2 is a key gene implicated in maintaining the stemness of embryonic and adult stem cells that appears to re‐activate in several human cancers including glioblastoma multiforme. Using immunoprecipitation (IP)/MS/MS, we identified 144 proteins that are putative SOX2 interacting proteins. Of note, SOX2 was found to interact with several heterogeneous nuclear ribonucleoprotein family proteins, including HNRNPA2B1, HNRNPA3, HNRNPC, HNRNPK, HNRNPL, HNRNPM, HNRNPR, HNRNPU, as well as other ribonucleoproteins, DNA repair proteins and helicases. Gene ontology (GO) analysis revealed that the SOX2 interactome was enriched for GO terms GO:0030529 ribonucleoprotein complex and GO:0004386 helicase activity. These findings indicate that SOX2 associates with the heterogeneous nuclear ribonucleoprotein complex, suggesting a possible role for SOX2 in post‐transcriptional regulation in addition to its function as a transcription factor.


Omics A Journal of Integrative Biology | 2012

A Catalogue of Glioblastoma and Brain MicroRNAs Identified by Deep Sequencing

Dasong Hua; Fan Mo; Dong Ding; Lisa Li; Xu Han; Na Zhao; Gregory Foltz; Biaoyang Lin; Qing Lan; Qiang Huang

Glioblastoma is the most common and aggressive primary brain tumor. MicroRNAs (miRNAs) are a set of noncoding RNA of about 20∼22 nt in length and they play regulatory roles such as regulating the expression of proteins. Altered miRNA expression is related to cancers, including glioblastoma. In this report, we used deep sequencing to explore the miRNA profiles of glioblastoma and normal brain tissues. We found 875 and 811 known miRNA and miRNA* in glioblastoma and normal brain tissue, respectively, representing the largest characterization of the miRNAs in GBM so far. 33 of them were upregulated in glioblastoma, including miR-21, which is well known as an oncomir, while 40 of them were downregulated. Using miR-10b, miR-124, miR-433, and miR-92b as examples, we verified the data by quantitative RT-PCR, suggesting that deep sequencing was able to capture the expression profiles of miRNAs. In addition, we found 18 novel miRNA and 16 new miRNA* in glioblastoma and normal brain tissues. This report provides a useful resource for future studies of the roles of miRNAs in the pathogenesis and early detection of glioblastoma.


Oncology Reports | 2014

MicroRNA-127-3p promotes glioblastoma cell migration and invasion by targeting the tumor-suppressor gene SEPT7

Huawei Jiang; Dasong Hua; Jing Zhang; Qing Lan; Qiang Huang; Jae-Geun Yoon; Xu Han; Lisha Li; Gregory Foltz; Shu Zheng; Biaoyang Lin

MicroRNAs (miRNAs) are small non-coding RNAs of 20-25 nucleotides in length that are capable of modulating gene expression post-transcriptionally. The potential roles of miRNAs in the tumorigenesis of glioblastoma (GBM) have been under intensive studies in the past few years. In the present study, we found a positive correlation between the levels of miR-127-3p and the cell migration and invasion abilities in several human GBM cell lines. We showed that miR-127-3p promoted cell migration and invasion of GBM cells using in vitro cell lines and in vivo mouse models. We identified SEPT7, a known tumor-suppressor gene that has been reported to suppress GBM cell migration and invasion, as a direct target of miR-127-3p. SEPT7 was able to partially abrogate the effect of miR-127-3p on cell migration and invasion. In addition, microarray analysis revealed that miR-127-3p regulated a number of migration and invasion-related genes. Finally, we verified that miR-127-3p affected the remodeling of the actin cytoskeleton mediated by SEPT7 in GBM cells.


Omics A Journal of Integrative Biology | 2012

NDRG4 is downregulated in glioblastoma and inhibits cell proliferation.

Wenchao Ding; Jing Zhang; Jae-Geun Yoon; Dongyan Shi; Gregory Foltz; Biaoyang Lin

NDRG4 is a member of the N-myc downregulated gene family (NDRG) belonging to the alpha/beta hydrolase superfamily. We have previously documented discrepancy between our analysis of the expression and function of NDRG4 in glioblastoma multiforme (GBM) and a recent publication by Schilling et al., who reported that NDRG4 is upregulated in GBM compared to human cortex tissues and knock down of NDRG4 reduced the viability of GBM cells. In the present study, we found that NDRG4 is indeed downregulated, at both RNA and protein levels, by quantitative RT-PCR and Western blot analysis, in GBM compared to normal tissues, and that over expression of NDRG4 inhibited proliferation of GBM cells. These new observations can inform the selection of lead molecular compounds for drug discovery as well as novel diagnostics for GBM. They also lend evidence to NDRG4 a role of tumor suppressor.


Cancer Letters | 2015

VEGFR inhibitors upregulate CXCR4 in VEGF receptor-expressing glioblastoma in a TGFβR signaling-dependent manner

Kien Pham; Defang Luo; Dietmar W. Siemann; Brian K. Law; Brent A. Reynolds; Parvinder Hothi; Gregory Foltz; Jeffrey K. Harrison

The failure of standard treatment for patients diagnosed with glioblastoma (GBM) coupled with the highly vascularized nature of this solid tumor has led to the consideration of agents targeting VEGF or VEGFRs, as alternative therapeutic strategies for this disease. Despite modest achievements in survival obtained with such treatments, failure to maintain an enduring survival benefit and more invasive relapsing tumors are evident. Our study suggests a potential mechanism by which anti-VEGF/VEGFR therapies regulate the enhanced invasive phenotype through a pathway that involves TGFβR and CXCR4. VEGFR signaling inhibitors (Cediranib and Vandetanib) elevated the expression of CXCR4 in VEGFR-expressing GBM cell lines and tumors, and enhanced the in vitro migration of these lines toward CXCL12. The combination of VEGFR inhibitor and CXCR4 antagonist provided a greater survival benefit to tumor-bearing animals. The upregulation of CXCR4 by VEGFR inhibitors was dependent on TGFβ/TGFβR, but not HGF/MET, signaling activity, suggesting a mechanism of crosstalk among VEGF/VEGFR, TGFβ/TGFβR, and CXCL12/CXCR4 pathways in the malignant phenotype of recurrent tumors after anti-VEGF/VEGFR therapies. Thus, the combination of VEGFR, CXCR4, and TGFβR inhibitors could provide an alternative strategy to halt GBM progression.

Collaboration


Dive into the Gregory Foltz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leroy Hood

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dasong Hua

Zhejiang California International NanoSystems Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Zhang

Zhejiang California International NanoSystems Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge