Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory G. Dolnikowski is active.

Publication


Featured researches published by Gregory G. Dolnikowski.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status

Simonetta Friso; Sang-Woon Choi; Domenico Girelli; Joel B. Mason; Gregory G. Dolnikowski; Pamela J. Bagley; Paul F. Jacques; Irwin H. Rosenberg; Roberto Corrocher; Jacob Selhub

DNA methylation, an essential epigenetic feature of DNA that modulates gene expression and genomic integrity, is catalyzed by methyltransferases that use the universal methyl donor S-adenosyl-l-methionine. Methylenetetrahydrofolate reductase (MTHFR) catalyzes the synthesis of 5-methyltetrahydrofolate (5-methylTHF), the methyl donor for synthesis of methionine from homocysteine and precursor of S-adenosyl-l-methionine. In the present study we sought to determine the effect of folate status on genomic DNA methylation with an emphasis on the interaction with the common C677T mutation in the MTHFR gene. A liquid chromatography/MS method for the analysis of nucleotide bases was used to assess genomic DNA methylation in peripheral blood mononuclear cell DNA from 105 subjects homozygous for this mutation (T/T) and 187 homozygous for the wild-type (C/C) MTHFR genotype. The results show that genomic DNA methylation directly correlates with folate status and inversely with plasma homocysteine (tHcy) levels (P < 0.01). T/T genotypes had a diminished level of DNA methylation compared with those with the C/C wild-type (32.23 vs.62.24 ng 5-methylcytosine/μg DNA, P < 0.0001). When analyzed according to folate status, however, only the T/T subjects with low levels of folate accounted for the diminished DNA methylation (P < 0.0001). Moreover, in T/T subjects DNA methylation status correlated with the methylated proportion of red blood cell folate and was inversely related to the formylated proportion of red blood cell folates (P < 0.03) that is known to be solely represented in those individuals. These results indicate that the MTHFR C677T polymorphism influences DNA methylation status through an interaction with folate status.


Nature Medicine | 2007

Retinaldehyde represses adipogenesis and diet-induced obesity.

Ouliana Ziouzenkova; Gabriela Orasanu; Molly Sharlach; Taro E. Akiyama; Joel P. Berger; James A. Hamilton; Guangwen Tang; Gregory G. Dolnikowski; Silke Vogel; Gregg Duester; Jorge Plutzky

The metabolism of vitamin A and the diverse effects of its metabolites are tightly controlled by distinct retinoid-generating enzymes, retinoid-binding proteins and retinoid-activated nuclear receptors. Retinoic acid regulates differentiation and metabolism by activating the retinoic acid receptor and retinoid X receptor (RXR), indirectly influencing RXR heterodimeric partners. Retinoic acid is formed solely from retinaldehyde (Rald), which in turn is derived from vitamin A. Rald currently has no defined biologic role outside the eye. Here we show that Rald is present in rodent fat, binds retinol-binding proteins (CRBP1, RBP4), inhibits adipogenesis and suppresses peroxisome proliferator-activated receptor-γ and RXR responses. In vivo, mice lacking the Rald-catabolizing enzyme retinaldehyde dehydrogenase 1 (Raldh1) resisted diet-induced obesity and insulin resistance and showed increased energy dissipation. In ob/ob mice, administrating Rald or a Raldh inhibitor reduced fat and increased insulin sensitivity. These results identify Rald as a distinct transcriptional regulator of the metabolic responses to a high-fat diet.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

Extended-Release Niacin Alters the Metabolism of Plasma Apolipoprotein (Apo) A-I and ApoB-Containing Lipoproteins

Stefania Lamon-Fava; Margaret R. Diffenderfer; P. Hugh R. Barrett; Aaron Buchsbaum; Mawuli Nyaku; Katalin V. Horvath; Bela F. Asztalos; Seiko Otokozawa; Masumi Ai; Nirupa R. Matthan; Alice H. Lichtenstein; Gregory G. Dolnikowski; Ernst J. Schaefer

Objectives—Extended-release niacin effectively lowers plasma TG levels and raises plasma high-density lipoprotein (HDL) cholesterol levels, but the mechanisms responsible for these effects are unclear. Methods and Results—We examined the effects of extended-release niacin (2 g/d) and extended-release niacin (2 g/d) plus lovastatin (40 mg/d), relative to placebo, on the kinetics of apolipoprotein (apo) A-I and apoA-II in HDL, apoB-100 in TG-rich lipoproteins (TRL), intermediate-density lipoproteins (IDL) and low-density lipoproteins (LDL), and apoB-48 in TRL in 5 men with combined hyperlipidemia. Niacin significantly increased HDL cholesterol and apoA-I concentrations, associated with a significant increase in apoA-I production rate (PR) and no change in fractional catabolic rate (FCR). Plasma TRL apoB-100 levels were significantly lowered by niacin, accompanied by a trend toward an increase in FCR and no change in PR. Niacin treatment significantly increased TRL apoB-48 FCR but had no effect on apoB-48 PR. No effects of niacin on concentrations or kinetic parameters of IDL and LDL apoB-100 and HDL apoA-II were noted. The addition of lovastatin to niacin promoted a lowering in LDL apoB-100 attributable to increased LDL apoB-100 FCR. Conclusion—Niacin treatment was associated with significant increases in HDL apoA-I concentrations and production, as well as enhanced clearance of TRL apoB-100 and apoB-48.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1999

Human Apolipoprotein (Apo) B-48 and ApoB-100 Kinetics With Stable Isotopes

Francine K. Welty; Alice H. Lichtenstein; P. Hugh R. Barrett; Gregory G. Dolnikowski; Ernst J. Schaefer

The kinetics of apolipoprotein (apo) B-100 and apoB-48 within triglyceride-rich lipoproteins (TRLs) and of apoB-100 within IDL and LDL were examined with a primed-constant infusion of (5,5,5-(2)H(3)) leucine in the fed state (hourly feeding) in 19 subjects after consumption of an average American diet (36% fat). Lipoproteins were isolated by ultracentrifugation and apolipoproteins by SDS gels, and isotope enrichment was assessed by gas chromatography/mass spectrometry. Kinetic parameters were calculated by multicompartmental modeling of the data with SAAM II. The pool sizes (PS) of TRL apoB-48, VLDL apoB-100, and LDL apoB-100 were 17+/-10, 273+/-167, and 3325+/-1146 mg, respectively. There was a trend toward a faster fractional catabolic rate (FCR) for VLDL apoB-100 than for TRL apoB-48 (6.73+/-3.48 versus 5.02+/-2.07 pools/d, respectively, P=0.06). The mean FCRs for IDL and LDL apoB-100 were 10.07+/-7.28 and 0.27+/-0.08 pools/d, respectively. The mean production rate (PR) of TRL apoB-48 was 6.5% of VLDL apoB-100 (1. 3+/-0.90 versus 20.06+/-6.53 mg. kg(-1). d(-1), P<0.0001). TRL apoB-48 PS was correlated with apoB-48 PR (r=0.780, P<0.0001) but not FCR (r=-0.1810, P=0.458). VLDL apoB-100 PS was correlated with both PR (r=0.713, P=0.0006) and FCR (r=-0.692, P=0.001) of VLDL apoB-100 and by apoB-48 PR (r=0.728, P=0.0004). LDL apoB-100 PS was correlated with FCR (r=-0.549, P=0.015). These data indicate that (1) the FCRs of TRL apoB-48 and VLDL apoB-100 are similar in the fed state, (2) TRL apoB-48 PS is correlated with TRL apoB-48 PR, (3) VLDL apoB-100 PS is correlated with both PR and FCR of VLDL apoB-100 and PR of TRL apoB-48, and (4) LDL apoB-100 PS is correlated with LDL FCR.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2004

Dietary Hydrogenated Fat Increases High-Density Lipoprotein apoA-I Catabolism and Decreases Low-Density Lipoprotein apoB-100 Catabolism in Hypercholesterolemic Women

Nirupa R. Matthan; Francine K. Welty; P. Hugh R. Barrett; Carrie Harausz; Gregory G. Dolnikowski; John S. Parks; Robert H. Eckel; Ernst J. Schaefer; Alice H. Lichtenstein

Objective—To determine mechanisms contributing to decreased high-density lipoprotein cholesterol (HDL-C) and increased low-density lipoprotein cholesterol (LDL-C) concentrations associated with hydrogenated fat intake, kinetic studies of apoA-I, apoB-100, and apoB-48 were conducted using stable isotopes. Methods and Results—Eight postmenopausal hypercholesterolemic women were provided in random order with 3 diets for 5-week periods. Two-thirds of the fat was soybean oil (unsaturated fat), stick margarine (hydrogenated fat), or butter (saturated fat). Total and LDL-C levels were highest after the saturated diet (P< 0.05; saturated versus unsaturated) whereas HDL-C levels were lowest after the hydrogenated diet (P< 0.05; hydrogenated versus saturated). Plasma apoA-I levels and pool size (PS) were lower, whereas apoA-I fractional catabolic rate (FCR) was higher after the hydrogenated relative to the saturated diet (P< 0.05). LDL apoB-100 levels and PS were significantly higher, whereas LDL apoB-100 FCR was lower with the saturated and hydrogenated relative to the unsaturated diet. There was no significant difference among diets in apoA-I or B-100 production rates or apoB-48 kinetic parameters. HDL-C concentrations were negatively associated with apoA-I FCR (r=−0.56, P=0.03) and LDL-C concentrations were negatively correlated with LDL apoB-100 FCR (r=−0.48, P=0.05). Conclusions—The mechanism for the adverse lipoprotein profile observed with hydrogenated fat intake is determined in part by increased apoA-I and decreased LDL apoB-100 catabolism.


Journal of Lipid Research | 2007

Effects of different doses of atorvastatin on human apolipoprotein B-100, B-48, and A-I metabolism

Stefania Lamon-Fava; Margaret R. Diffenderfer; P. Hugh R. Barrett; Aaron Buchsbaum; Nirupa R. Matthan; Alice H. Lichtenstein; Gregory G. Dolnikowski; Katalin V. Horvath; Bela F. Asztalos; Valeria Zago; Ernst J. Schaefer

Nine hypercholesterolemic and hypertriglyceridemic subjects were enrolled in a randomized, placebo-controlled, double-blind, crossover study to test the effect of atorvastatin 20 mg/day and 80 mg/day on the kinetics of apolipoprotein B-100 (apoB-100) in triglyceride-rich lipoprotein (TRL), intermediate density lipoprotein (IDL), and LDL, of apoB-48 in TRL, and of apoA-I in HDL. Compared with placebo, atorvastatin 20 mg/day was associated with significant reductions in TRL, IDL, and LDL apoB-100 pool size as a result of significant increases in fractional catabolic rate (FCR) without changes in production rate (PR). Compared with the 20 mg/day dose, atorvastatin 80 mg/day caused a further significant reduction in the LDL apoB-100 pool size as a result of a further increase in FCR. ApoB-48 pool size was reduced significantly by both atorvastatin doses, and this reduction was associated with nonsignificant increases in FCR. The lathosterol-campesterol ratio was decreased by atorvastatin treatment, and changes in this ratio were inversely correlated with changes in TRL apoB-100 and apoB-48 PR. No significant effect on apoA-I kinetics was observed at either dose of atorvastatin. Our data indicate that atorvastatin reduces apoB-100- and apoB-48-containing lipoproteins by increasing their catabolism and has a dose-dependent effect on LDL apoB-100 kinetics. Atorvastatin-mediated changes in cholesterol homeostasis may contribute to apoB PR regulation.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2006

Effects of the Cholesteryl Ester Transfer Protein Inhibitor Torcetrapib on Apolipoprotein B100 Metabolism in Humans

John S. Millar; Margaret E. Brousseau; Margaret R. Diffenderfer; P. Hugh; R. Barrett; Francine K. Welty; Aisha Faruqi; Megan L. Wolfe; Chorthip Nartsupha; Andres Digenio; James P. Mancuso; Gregory G. Dolnikowski; Ernst J. Schaefer; Daniel J. Rader

Objective—Cholesteryl ester transfer protein (CETP) inhibition with torcetrapib not only increases high-density lipoprotein cholesterol levels but also significantly reduces plasma triglyceride, low-density lipoprotein (LDL) cholesterol, and apolipoprotein B (apoB) levels. The goal of the present study was to define the kinetic mechanism(s) by which CETP inhibition reduces levels of apoB-containing lipoproteins. Methods and Results—Nineteen subjects, 9 of whom were pretreated with 20 mg atorvastatin, received placebo for 4 weeks, followed by 120 mg torcetrapib once daily for 4 weeks. Six subjects in the nonatorvastatin group received 120 mg torcetrapib twice daily for an additional 4 weeks. After each phase, subjects underwent a primed-constant infusion of deuterated leucine to endogenously label newly synthesized apoB to determine very low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL) and LDL apoB100 production, and fractional catabolic rates (FCRs). Once-daily 120 mg torcetrapib significantly reduced VLDL, IDL, and LDL apoB100 pool sizes by enhancing the FCR of apoB100 within each fraction. On a background of atorvastatin, 120 mg torcetrapib significantly reduced VLDL, IDL, and LDL apoB100 pool sizes. The reduction in VLDL apoB100 was associated with an enhanced apoB100 FCR, whereas the decreases in IDL and LDL apoB100 were associated with reduced apoB100 production. Conclusions—These data indicate that when used alone, torcetrapib reduces VLDL, IDL, and LDL apoB100 levels primarily by increasing the rate of apoB100 clearance. In contrast, when added to atorvastatin treatment, torcetrapib reduces apoB100 levels mainly by enhancing VLDL apoB100 clearance and reducing production of IDL and LDL apoB100.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1997

Lovastatin Decreases De Novo Cholesterol Synthesis and LDL Apo B-100 Production Rates in Combined-Hyperlipidemic Males

Marina Cuchel; Ernst J. Schaefer; John S. Millar; Peter J. H. Jones; Gregory G. Dolnikowski; Carlo Vergani; Alice H. Lichtenstein

The effect of lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, on the kinetics of de novo cholesterol synthesis and apolipoprotein (apo) B in very-low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), and low-density lipoprotein (LDL) was investigated in five male patients with combined hyperlipidemia. Subjects were counseled to follow a Step 2 diet and were treated with lovastatin and placebo in randomly assigned order for 6-week periods. At the end of each experimental period, subjects were given deuterium oxide orally and de novo cholesterol synthesis was assessed from deuterium incorporation into cholesterol and expressed as fractional synthesis rate (C-FSR) and production rate (C-PR). Simultaneously, the kinetics of VLDL, IDL, and LDL apo B-100 were studied in the fed state using a primed-constant infusion of deuterated leucine to measure fractional catabolic rates (FCR) and production rates (PR). Drug treatment resulted in significant decreases in total cholesterol (-29%), VLDL cholesterol (-40%), LDL cholesterol (-27%), and apo B (-16%) levels and increases in HDL cholesterol (+13%) and apolipoprotein (apo) A-I (+11%) levels. Associated with these plasma lipoprotein responses was a significant reduction in both de novo C-FSR (-40%; P = .04) and C-PR (-42%; P = .03). Treatment with lovastain in these patients had no significant effect on the FCR of apoB-100 in VLDL, IDL, or LDL, but resulted in a significant decrease in the PR of apoB-100 in IDL and LDL. Comparing the kinetic data of these patients with those of 10 normolipidemic control subjects indicates that lovastatin treatment normalized apoB-100 IDL and LDL PR. The results of these studies suggest that the declines in plasma lipid levels observed after treatment of combined hyperlipidemic patients with lovastatin are attributable to reductions in the C-FSR and C-PR of de novo cholesterol synthesis and the PR of apoB-100 containing lipoproteins. The decline in de novo cholesterol synthesis, rather than an increase in direct uptake of VLDL and IDL, may have contributed to the decline in the PR observed.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1999

Dietary Restriction of Saturated Fat and Cholesterol Decreases HDL ApoA-I Secretion

Wanda Velez-Carrasco; Alice H. Lichtenstein; Francine K. Welty; Zhengling Li; Stefania Lamon-Fava; Gregory G. Dolnikowski; Ernst J. Schaefer

We examined the mechanisms responsible for the decrease in HDL cholesterol (HDL-C) levels after the consumption of a diet low in total fat, saturated fat, and cholesterol. Twenty-one subjects with a mean age of 58+/-12 years were placed on a baseline isocaloric diet (15% protein, 49% carbohydrate, 36% fat, and 150 mg/1000 kcals of cholesterol) and then switched to an NCEP Step 2 diet (15% protein, 60% carbohydrate, 25% fat, and 45 mg/1000 kcals of cholesterol). After 6 or 24 weeks on each diet, subjects received a 15-hour primed-constant infusion of [5,5,5-2H3]-L-leucine. HDL apoA-I and apoA-II tracer curves were determined by gas chromatography-mass spectrometry and fitted to a monoexponential equation. Compared with the baseline diet, consumption of the Step 2 diet lowered HDL-C mean levels by 15% (1.03+/-0.23 to 0.88+/-0.16 mmol/L, P<0.001), apoA-I by 12% (1.25+/-0.15 to 1.10+/-0.13 g/L, P<0. 001) and the TC/HDL-C ratio by 5% (0.145+/-0.04 to 0.137+/-0.03). No significant changes were observed in apoA-II levels and HDL particle size with diet. HDL apoA-I fractional catabolic rate did not change (0.219+/-0.052 to 0.220+/-0.043 pools/day, P=0.91) but HDL apoA-I secretion rate decreased by 8% (12.26+/-3.07 to 10.84+/-2.11 mg. kg-1. day-1, P=0.03) during consumption of the Step 2 diet. There was no effect of diet on apoA-II fractional catabolic rate or secretion rate. Our results indicate that the decrease in HDL-C and apoA-I levels during the isocaloric consumption of a Step 2 diet paralleled the reductions in apoA-I secretion rate.


Free Radical Biology and Medicine | 2000

RELATIVE REACTIVITY OF LYSINE AND OTHER PEPTIDE-BOUND AMINO ACIDS TO OXIDATION BY HYPOCHLORITE

Zachary D Nightingale; Antonio Herbert Lancha; Samuel K. Handelman; Gregory G. Dolnikowski; Scott C. Busse; Edward A. Dratz; Jeffrey B. Blumberg; Garry J. Handelman

Antibacterial and inflammatory responses of neutrophils and macrophages produce hypochlorite as a major oxidant. Numerous side chains of amino acids found in extracellular proteins can be modified by hypochlorite, including His, Arg, Tyr, Lys, Trp, and Met. We studied the relative reactivity of each of these amino acid residues in short N-blocked peptides, where other residues in the peptide were highly resistant to hypochlorite attack. Hypochlorite treatment led to modified peptides in each case, which were detected by changes in retention on reversed-phase HPLC. A distinct single product, consuming two equivalents of hypochlorite per equivalent of peptide, was obtained from the Lys-containing peptides. UV spectroscopy, nuclear magnetic resonance (NMR), and electrospray/mass spectroscopy identified this product as the dichloramine at the epsilon-amino group of the Lys side chain. The dichloramine at Lys did not decompose to form a detectable amount of carbonyl reactive with dinitrophenylhydrazine. The dichloramine at Lys did however quantitatively revert back to Lys during HCl digestion of the tetrapeptide for amino acid analysis, with simultaneous modification of the adjacent Phe residue. The formation of the dichloramine at Lys was not blocked by peptides or acetylated amino acids that contained Tyr, His, or Arg. In contrast, the presence of equimolar Met-containing peptide, or N-Acetyl-Trp, both inhibited the formation of the dichloramine at Lys. Thus, Met and Trp side chains of proteins might be able to protect Lys from chloramine formation under some circumstances, but this interpretation must consider that Met and Trp are typically found in relatively inaccessible hydrophobic sites, whereas lysine is typically exposed on the protein surface. The hierarchy of amino acid reactivities examined here will aid in the prediction of residues in biological samples most likely to be modified by hypochlorite.

Collaboration


Dive into the Gregory G. Dolnikowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francine K. Welty

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Hugh R. Barrett

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael A. Grusak

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge