Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory G. Germino is active.

Publication


Featured researches published by Gregory G. Germino.


Nature Methods | 2005

Multiple-laboratory comparison of microarray platforms

Rafael A. Irizarry; Daniel S. Warren; Forrest Spencer; Irene F. Kim; Shyam Biswal; Bryan Frank; Edward Gabrielson; Joe G. N. Garcia; Joel Geoghegan; Gregory G. Germino; Constance A. Griffin; Sara Hilmer; Eric P. Hoffman; Anne E. Jedlicka; Ernest S. Kawasaki; Francisco Martinez-Murillo; Laura A. Morsberger; Hannah Lee; David Petersen; John Quackenbush; Alan F. Scott; Michael Wilson; Yanqin Yang; Shui Qing Ye; Wayne Yu

Microarray technology is a powerful tool for measuring RNA expression for thousands of genes at once. Various studies have been published comparing competing platforms with mixed results: some find agreement, others do not. As the number of researchers starting to use microarrays and the number of cross-platform meta-analysis studies rapidly increases, appropriate platform assessments become more important. Here we present results from a comparison study that offers important improvements over those previously described in the literature. In particular, we noticed that none of the previously published papers consider differences between labs. For this study, a consortium of ten laboratories from the Washington, DC–Baltimore, USA, area was formed to compare data obtained from three widely used platforms using identical RNA samples. We used appropriate statistical analysis to demonstrate that there are relatively large differences in data obtained in labs using the same platform, but that the results from the best-performing labs agree rather well.


Cell | 2002

PKD1 Induces p21waf1 and Regulation of the Cell Cycle via Direct Activation of the JAK-STAT Signaling Pathway in a Process Requiring PKD2

Anil K. Bhunia; Klaus Piontek; Alessandra Boletta; Lijuan Liu; Feng Qian; Pei Ning Xu; F. Joseph Germino; Gregory G. Germino

Autosomal dominant polycystic kidney disease is characterized by cyst formation in the kidney and other organs and results from mutations of PKD1 or PKD2. Previous studies suggest that their gene products have an important role in growth regulation. We now show that expression of polycystin-1 activates the JAK-STAT pathway, thereby upregulating p21(waf1) and inducing cell cycle arrest in G0/G1. This process requires polycystin-2, a channel protein, as an essential cofactor. Mutations that disrupt polycystin-1/2 binding prevent activation of the pathway. Mouse embryos lacking Pkd1 have defective STAT1 phosphorylation and p21(waf1) induction. These results suggest that one function of the polycystin-1/2 complex is to regulate the JAK/STAT pathway and explain how mutations of either gene can result in dysregulated growth.


American Journal of Human Genetics | 2002

PKHD1, the Polycystic Kidney and Hepatic Disease 1 Gene, Encodes a Novel Large Protein Containing Multiple Immunoglobulin-Like Plexin-Transcription–Factor Domains and Parallel Beta-Helix 1 Repeats

Luiz F. Onuchic; Laszlo Furu; Yasuyuki Nagasawa; Xiaoying Hou; Thomas Eggermann; Zhiyong Ren; Carsten Bergmann; Jan Senderek; Ernie L. Esquivel; Raoul Zeltner; Sabine Rudnik-Schöneborn; Michael Mrug; William E. Sweeney; Ellis D. Avner; Klaus Zerres; Lisa M. Guay-Woodford; Stefan Somlo; Gregory G. Germino

Autosomal recessive polycystic kidney disease (ARPKD) is a severe form of polycystic kidney disease that presents primarily in infancy and childhood and that is characterized by enlarged kidneys and congenital hepatic fibrosis. We have identified PKHD1, the gene mutated in ARPKD. PKHD1 extends over > or =469 kb, is primarily expressed in human fetal and adult kidney, and includes a minimum of 86 exons that are variably assembled into a number of alternatively spliced transcripts. The longest continuous open reading frame encodes a 4,074-amino-acid protein, polyductin, that is predicted to have a single transmembrane (TM)-spanning domain near its carboxyl terminus, immunoglobulin-like plexin-transcription-factor domains, and parallel beta-helix 1 repeats in its amino terminus. Several transcripts encode truncated products that lack the TM and that may be secreted if translated. The PKHD1-gene products are members of a novel class of proteins that share structural features with hepatocyte growth-factor receptor and plexins and that belong to a superfamily of proteins involved in regulation of cell proliferation and of cellular adhesion and repulsion.


Nature Medicine | 2007

A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1

Klaus Piontek; Luis F. Menezes; Miguel A. Garcia-Gonzalez; David L. Huso; Gregory G. Germino

Autosomal dominant polycystic kidney disease is an important cause of end-stage renal disease, for which there is no proven therapy. Mutations in PKD1 (the gene encoding polycystin-1) are the principal cause of this disease. The disease begins in utero and is slowly progressive, but it is not known whether cystogenesis is an ongoing process during adult life. We now show that inactivation of Pkd1 in mice before postnatal day 13 results in severely cystic kidneys within 3 weeks, whereas inactivation at day 14 and later results in cysts only after 5 months. We found that cellular proliferation was not appreciably higher in cystic specimens than in age-matched controls, but the abrupt change in response to Pkd1 inactivation corresponded to a previously unrecognized brake point during renal growth and significant changes in gene expression. These findings suggest that the effects of Pkd1 inactivation are defined by a developmental switch that signals the end of the terminal renal maturation process. Our studies show that Pkd1 regulates tubular morphology in both developing and adult kidney, but the pathologic consequences of inactivation are defined by the organs developmental status. These results have important implications for clinical understanding of the disease and therapeutic approaches.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations

Feng Qian; Alessandra Boletta; Anil K. Bhunia; Hangxue Xu; L F Liu; Ali K. Ahrabi; Terry Watnick; Fang Zhou; Gregory G. Germino

Polycystin-1 plays an essential role in renal tubular morphogenesis, and disruption of its function causes cystogenesis in human autosomal-dominant polycystic kidney disease (ADPKD). We demonstrated that polycystin-1 undergoes cleavage at G protein coupled receptor proteolytic site in a process that requires the receptor for egg jelly domain. Most of the N-terminal fragment remains tethered at the cell surface, although a small amount is secreted. PKD1-associated mutations in the receptor for egg jelly domain disrupt cleavage, abolish the ability of polycystin-1 to activate signal transducer and activator of transcription-1, and induce tubulogenesis in vitro. We conclude that the cleavage of polycystin-1 is likely essential for its biologic activity.


Molecular Cell | 2000

Polycystin-1, the gene product of PKD1, induces resistance to apoptosis and spontaneous tubulogenesis in MDCK cells.

Alessandra Boletta; Feng Qian; Luiz F. Onuchic; Anil K. Bhunia; Bunyong Phakdeekitcharoen; Kazushige Hanaoka; William B. Guggino; Lucia Monaco; Gregory G. Germino

The major form of autosomal dominant polycystic kidney disease (ADPKD) results from mutation of a gene (PKD1) of unknown function that is essential for the later stages of renal tubular differentiation. In this report, we describe a novel cell culture system for studying how PKD1 regulates this process. We show that expression of human PKD1 in MDCK cells slows their growth and protects them from programmed cell death. MDCK cells expressing PKD1 also spontaneously form branching tubules while control cells form simple cysts. Increased cell proliferation and apoptosis have been implicated in the pathogenesis of cystic diseases. Our study suggests that PKD1 may function to regulate both pathways, allowing cells to enter a differentiation pathway that results in tubule formation.


Journal of Immunology | 2001

Identification of a novel cytokine, ML-1, and its expression in subjects with asthma.

Mio Kawaguchi; Luiz F. Onuchic; Xiao-Dong Li; David M. Essayan; John T. Schroeder; HuiQing Xiao; Mark C. Liu; Guha Krishnaswamy; Gregory G. Germino; S.K. Huang

A novel gene, designated ML-1, was identified from a human genomic DNA clone and human T cell cDNA sequences. The second exon of ML-1 gene shares significant sequence identity with the gene encoding IL-17 (IL-17). ML-1 gene expression was up-regulated in activated PBMCs, CD4+ T cells, allergen-specific Th0, Th1, and Th2 clones, activated basophils, and mast cells. Increased expression of the ML-1 gene, but not IL-17, was seen following allergen challenge in four asthmatic subjects, suggesting its role in allergic inflammatory responses. ML-1 from transiently transfected COS-7 cells was able to induce gene expression and protein production for IL-6 and IL-8 (at 10 ng/ml of ML-1: for IL-6, 599.6 ± 19.1 pg/ml; for IL-8, 1724.2 ± 132.9 pg/ml; and at 100 ng/ml of ML-1: for IL-6, 1005.3 ± 55.6 pg/ml; for IL-8, 4371.4 ± 280.5 pg/ml; p < 0.05 for both doses vs baseline) in primary bronchial epithelial (PBE) cells. Furthermore, increased expression of ICAM-1 was found in ML-1-stimulated PBE cells (mean fluorescence intensity (MFI) = 31.42 ± 4.39 vs baseline, MFI = 12.26 ± 1.77, p < 0.05), a functional feature distinct from IL-17 (MFI = 11.07 ± 1.22). This effect was not inhibited by a saturating amount of IL-17. These findings demonstrate that ML-1 is a novel cytokine with a distinct function, and suggest a different receptor for ML-1 on PBE cells.


Nature Genetics | 2003

From cilia to cyst

Terry Watnick; Gregory G. Germino

Nephronophthisis is the most common inherited cause of renal failure in children. Two new studies add to the growing body of literature that suggests that cilial dysfunction may underlie all forms of cystic renal disease.


Molecular and Cellular Biology | 2009

Polycystin-1 Regulates Extracellular Signal-Regulated Kinase-Dependent Phosphorylation of Tuberin To Control Cell Size through mTOR and Its Downstream Effectors S6K and 4EBP1

Gianfranco Distefano; Manila Boca; Isaline Rowe; Claas Wodarczyk; Li Ma; Klaus Piontek; Gregory G. Germino; Pier Paolo Pandolfi; Alessandra Boletta

ABSTRACT Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disease characterized by bilateral renal cyst formation. Both hyperproliferation and hypertrophy have been previously observed in ADPKD kidneys. Polycystin-1 (PC-1), a large orphan receptor encoded by the PKD1 gene and mutated in 85% of all cases, is able to inhibit proliferation and apoptosis. Here we show that overexpression of PC-1 in renal epithelial cells inhibits cell growth (size) in a cell cycle-independent manner due to the downregulation of mTOR, S6K1, and 4EBP1. Upregulation of the same pathway leads to increased cell size, as found in mouse embryonic fibroblasts derived from Pkd1−/− mice. We show that PC-1 controls the mTOR pathway in a Tsc2-dependent manner, by inhibiting the extracellular signal-regulated kinase (ERK)-mediated phosphorylation of tuberin in Ser664. We provide a detailed molecular mechanism by which PC-1 can inhibit the mTOR pathway and regulate cell size.


Journal of Biological Chemistry | 2005

Polycystin 2 Interacts with Type I Inositol 1,4,5-Trisphosphate Receptor to Modulate Intracellular Ca2+ Signaling

Yun Li; Jerry Wright; Feng Qian; Gregory G. Germino; William B. Guggino

Autosomal dominant polycystic kidney disease, a common cause of renal failure, arises from mutations in either the PKD1 or the PKD2 gene. The precise function of both PKD gene products polycystins (PCs) 1 and 2 remain controversial. PC2 has been localized to numerous cellular compartments, including the endoplasmic reticulum, plasma membrane, and cilia. It is unclear what pools are the most relevant to its physiological function as a putative Ca2+ channel. We employed a Xenopus oocyte Ca2+ imaging system to directly investigate the role of PC2 in inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling. Cytosolic Ca2+ signals were recorded following UV photolysis of caged IP3 in the absence of extracellular Ca2+. We demonstrated that overexpression of PC2, as well as type I IP3 receptor (IP3R), significantly prolonged the half-decay time (t½) of IP3-induced Ca2+ transients. However, overexpressing the disease-associated PC2 mutants, the point mutation D511V, and the C-terminally truncated mutation R742X did not alter the t½. In addition, we found that D511V overexpression significantly reduced the amplitude of IP3-induced Ca2+ transients. Interestingly, overexpression of the C terminus of PC2 not only significantly reduced the amplitude but also prolonged the t½. Co-immunoprecipitation assays indicated that PC2 physically interacts with IP3R through its C terminus. Taken together, our data suggest that PC2 and IP3R functionally interact and modulate intracellular Ca2+ signaling. Therefore, mutations in either PC1 or PC2 could result in the misregulation of intracellular Ca2+ signaling, which in turn could contribute to the pathology of autosomal dominant polycystic kidney disease.

Collaboration


Dive into the Gregory G. Germino's collaboration.

Top Co-Authors

Avatar

Feng Qian

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaus Piontek

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandra Boletta

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellis D. Avner

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge