Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory G. Stone is active.

Publication


Featured researches published by Gregory G. Stone.


Helicobacter | 1996

Identification of a 23S rRNA Gene Mutation in Clarithromycin‐Resistant Helicobacter pylori

Gregory G. Stone; Dee Shortridge; Robert K. Flamm; James Versalovic; Jill Beyer; Ken Idler; Laura Zulawinski; S. Ken Tanaka

BackgroundTransition mutations (A‐G) at residue 2143, cognate to position 2058 in the Escherichia coli 23S rRNA gene, have been shown to confer resistance to macrolides in Helicobacter pylori. This study reports the finding that transversion mutations (A‐C) can occur at 2143 as well.


Clinical Infectious Diseases | 2016

Ceftazidime-avibactam Versus Doripenem for the Treatment of Complicated Urinary Tract Infections, Including Acute Pyelonephritis: RECAPTURE, a Phase 3 Randomized Trial Program.

Florian Wagenlehner; Jack D. Sobel; Paul Newell; Jon Armstrong; Xiangning Huang; Gregory G. Stone; Katrina Yates; Leanne B. Gasink

There is an urgent need for new strategies to reduce carbapenem consumption. Ceftazidime-avibactam was highly effective for empiric treatment of complicated urinary tract infection, including in patients with ceftazidime-nonsusceptible pathogens, and may offer an alternative to carbapenems in this setting.


Diagnostic Microbiology and Infectious Disease | 2002

Antimicrobial susceptibility and molecular characterization of community-acquired methicillin-resistant Staphylococcus aureus.

Laurel S. Almer; Virginia D. Shortridge; Angela M. Nilius; Jill Beyer; Niru B. Soni; Mai H. Bui; Gregory G. Stone; Robert K. Flamm

Community-acquired methicillin-resistant Staphylococcus aureus (MRSA) infections are increasing. Since most published data are on nosocomial MRSA, our goal was to identify the antimicrobial susceptibility profile and resistance mechanisms of pretreatment MRSA isolates obtained from adult subjects participating in recent clinical treatment trials of community respiratory infections. Out of 465 S. aureus isolates, 43 were identified as MRSA. Antimicrobial susceptibility testing indicated susceptibility rates to: vancomycin (100%), gentamicin (86%), clindamycin (39%), quinolones (49%), and erythromycin (12%). Among our MRSA isolates, the MLS constitutive phenotype and ermA were more prevalent than the MLS inducible phenotype and ermC. No isolates had ermB or msrA. All ciprofloxacin resistant isolates had an amino acid change in GyrA and GrlA. The relatedness of our MRSA strains was assessed by ribotyping. Our results indicate that MRSA from adult subjects with community respiratory infections have similar antimicrobial susceptibility profiles and resistance mechanisms as nosocomial MRSA, and represent a genetically diverse group.


Journal of Chemotherapy | 2014

Avibactam reverts the ceftazidime MIC90 of European Gram-negative bacterial clinical isolates to the epidemiological cut-off value

Robert K. Flamm; Gregory G. Stone; Helio S. Sader; Ronald N. Jones; Wright W. Nichols

Abstract Objectives: Ceftazidime-avibactam consists of the beta-lactam ceftazidime and the novel non-beta-lactam beta-lactamase inhibitor avibactam. The effect of avibactam on the ceftazidime MIC frequency distribution of Gram-negative European clinical isolates was observed and compared to European Committee for Antimicrobial Susceptibility Testing (EUCAST) MIC frequency distributions and epidemiological cut-off values (ECOFFs) listed for ceftazidime. Methods: Ceftazidime and ceftazidime-avibactam MICs were determined using Clinical and Laboratory Standards Institute (CLSI) reference broth microdilution methods for Pseudomonas aeruginosa, Escherichia coli, Klebsiella spp., Serratia spp., Enterobacter spp., and Proteus mirabilis isolates collected from medical centres in Europe during 2009. Results: The MIC90 values for ceftazidime and ceftazidime-avibactam against P. aeruginosa isolates from a 2009 European surveillance programme were >32 and 8 mg/l, respectively. That is, the presence of avibactam reverted the ceftazidime MIC90 for P. aeruginosa to the ECOFF. Similarly, the MIC90 values for ceftazidime against E. coli, Klebsiella spp., Serratia spp., and P. mirabilis were also reduced to the ECOFF by the presence of avibactam. Avibactam reduced the ceftazidime MIC90 value against collected Enterobacter spp. to 1 mg/l (>32-fold reduction). No ECOFF has been defined for Enterobacter spp. however, it is 1 mg/l for Enterobacter aerogenes and Enterobacter cloacae. Conclusions: The presence of avibactam reverted the ceftazidime MIC90 for Gram-negative bacteria to the ECOFF.


Journal of Medicinal Chemistry | 2009

Discovery of azetidinyl ketolides for the treatment of susceptible and multidrug resistant community-acquired respiratory tract infections.

Thomas V. Magee; Sharon L. Ripp; Bryan Li; Richard A. Buzon; Lou Chupak; Thomas J. Dougherty; Steven M. Finegan; Dennis Girard; Anne E. Hagen; Michael J. Falcone; Kathleen A. Farley; Karl Granskog; Joel R. Hardink; Michael D. Huband; Barbara J. Kamicker; Takushi Kaneko; Michael J. Knickerbocker; Jennifer Liras; Andrea Marra; Ivy Medina; Thuy-Trinh Nguyen; Mark C. Noe; R. Scott Obach; John P. O’Donnell; Joseph Penzien; Usa Reilly; John Schafer; Yue Shen; Gregory G. Stone; Timothy J. Strelevitz

Respiratory tract bacterial strains are becoming increasingly resistant to currently marketed macrolide antibiotics. The current alternative telithromycin (1) from the newer ketolide class of macrolides addresses resistance but is hampered by serious safety concerns, hepatotoxicity in particular. We have discovered a novel series of azetidinyl ketolides that focus on mitigation of hepatotoxicity by minimizing hepatic turnover and time-dependent inactivation of CYP3A isoforms in the liver without compromising the potency and efficacy of 1.


Bioorganic & Medicinal Chemistry Letters | 2013

Novel quinoline derivatives as inhibitors of bacterial DNA gyrase and topoisomerase IV.

Mark J. Mitton-Fry; Steven J. Brickner; Judith C. Hamel; Lori Brennan; Jeffrey M. Casavant; Michael Chen; Tao Chen; Xiaoyuan Ding; James P. Driscoll; Joel R. Hardink; Thuy Hoang; Erbing Hua; Michael D. Huband; Meghan Maloney; Anthony Marfat; Sandra P. McCurdy; Dale McLeod; Michael Plotkin; Usa Reilly; Shaughn Robinson; John Schafer; Richard M. Shepard; James F. Smith; Gregory G. Stone; Chakrapani Subramanyam; Kwansik Yoon; Wei Yuan; Richard P. Zaniewski; Christopher Zook

A structurally novel set of inhibitors of bacterial type II topoisomerases with potent in vitro and in vivo antibacterial activity was developed. Dual-targeting ability, hERG inhibition, and pharmacokinetic properties were also assessed.


Antimicrobial Agents and Chemotherapy | 2016

Activity of Ceftazidime-Avibactam against Extended-Spectrum- and AmpC β-Lactamase-Producing Enterobacteriaceae Collected in the INFORM Global Surveillance Study from 2012 to 2014

James A. Karlowsky; Douglas J. Biedenbach; Krystyna M. Kazmierczak; Gregory G. Stone; Daniel F. Sahm

ABSTRACT The in vitro activity of ceftazidime-avibactam was evaluated against 34,062 isolates of Enterobacteriaceae from patients with intra-abdominal, urinary tract, skin and soft-tissue, lower respiratory tract, and blood infections collected in the INFORM (International Network For Optimal Resistance Monitoring) global surveillance study (176 medical center laboratories in 39 countries) in 2012 to 2014. Overall, 99.5% of Enterobacteriaceae isolates were susceptible to ceftazidime-avibactam using FDA approved breakpoints (susceptible MIC of ≤8 μg/ml; resistant MIC of ≥16 μg/ml). For individual species of the Enterobacteriaceae, the ceftazidime-avibactam MIC inhibiting ≥90% of isolates (MIC90) ranged from 0.06 μg/ml for Proteus species to 1 μg/ml for Enterobacter spp. and Klebsiella pneumoniae. Carbapenem-susceptible isolates of Escherichia coli, K. pneumoniae, Klebsiella oxytoca, and Proteus mirabilis with a confirmed extended-spectrum β-lactamase (ESBL) phenotype, or a ceftazidime MIC of ≥16 μg/ml if the ESBL phenotype was not confirmed by clavulanic acid inhibition, were characterized further to identify the presence of specific ESBL- and plasmid-mediated AmpC β-lactamase genes using a microarray-based assay and additional PCR assays. Ceftazidime-avibactam demonstrated potent activity against molecularly confirmed ESBL-producing (n = 5,354; MIC90, 0.5 μg/ml; 99.9% susceptible), plasmid-mediated AmpC-producing (n = 246; MIC90, 0.5 μg/ml; 100% susceptible), and ESBL- and AmpC-producing (n = 152; MIC90, 1 μg/ml; 100% susceptible) isolates of E. coli, K. pneumoniae, K. oxytoca, and P. mirabilis. We conclude that ceftazidime-avibactam demonstrates potent in vitro activity against globally collected clinical isolates of Enterobacteriaceae, including isolates producing ESBLs and AmpC β-lactamases.


Lancet Infectious Diseases | 2017

Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): a randomised, double-blind, phase 3 non-inferiority trial

Antoni Torres; Nan Shan Zhong; Jan Pachl; Jean-François Timsit; Marin H. Kollef; Zhangjing Chen; Jie Song; Dianna Taylor; Peter J. Laud; Gregory G. Stone; Joseph W. Chow

BACKGROUND Nosocomial pneumonia is commonly associated with antimicrobial-resistant Gram-negative pathogens. We aimed to assess the efficacy and safety of ceftazidime-avibactam in patients with nosocomial pneumonia, including ventilator-associated pneumonia, compared with meropenem in a multinational, phase 3, double-blind, non-inferiority trial (REPROVE). METHODS Adults with nosocomial pneumonia (including ventilator-associated pneumonia), enrolled at 136 centres in 23 countries, were randomly assigned (1:1) to 2000 mg ceftazidime and 500 mg avibactam (by 2 h intravenous infusion every 8 h) or 1000 mg meropenem (by 30-min intravenous infusion every 8 h) for 7-14 days; regimens were adjusted for renal function. Computer-generated randomisation codes were stratified by infection type and geographical region with a block size of four. Participants and investigators were masked to treatment assignment. The primary endpoint was clinical cure at the test-of-cure visit (21-25 days after randomisation). Non-inferiority was concluded if the lower limit of the two-sided 95% CI for the treatment difference was greater than -12·5% in the coprimary clinically modified intention-to-treat and clinically evaluable populations. This trial is registered with ClinicalTrials.gov (NCT01808092) and EudraCT (2012-004006-96). FINDINGS Between April 13, 2013, and Dec 11, 2015, 879 patients were randomly assigned. 808 patients were included in the safety population, 726 were included in the clinically modified intention-to-treat population, and 527 were included in the clinically evaluable population. Predominant Gram-negative baseline pathogens in the microbiologically modified intention-to-treat population (n=355) were Klebsiella pneumoniae (37%) and Pseudomonas aeruginosa (30%); 28% were ceftazidime-non-susceptible. In the clinically modified intention-to-treat population, 245 (68·8%) of 356 patients in the ceftazidime-avibactam group were clinically cured, compared with 270 (73·0%) of 370 patients in the meropenem group (difference -4·2% [95% CI -10·8 to 2·5]). In the clinically evaluable population, 199 (77·4%) of 257 participants were clinically cured in the ceftazidime-avibactam group, compared with 211 (78·1%) of 270 in the meropenem group (difference -0·7% [95% CI -7·9 to 6·4]). Adverse events occurred in 302 (75%) of 405 patients in the ceftazidime-avibactam group versus 299 (74%) of 403 in the meropenem group (safety population), and were mostly mild or moderate in intensity and unrelated to study treatment. Serious adverse events occurred in 75 (19%) patients in the ceftazidime-avibactam group and 54 (13%) patients in the meropenem group. Four serious adverse events (all in the ceftazidime-avibactam group) were judged to be treatment related. INTERPRETATION Ceftazidime-avibactam was non-inferior to meropenem in the treatment of nosocomial pneumonia. These results support a role for ceftazidime-avibactam as a potential alternative to carbapenems in patients with nosocomial pneumonia (including ventilator-associated pneumonia) caused by Gram-negative pathogens. FUNDING AstraZeneca.


Journal of Medicinal Chemistry | 2014

Novel DNA gyrase inhibiting spiropyrimidinetriones with a benzisoxazole scaffold: SAR and in vivo characterization.

Gregory S. Basarab; Patrick Brassil; Peter Doig; Vincent Galullo; Howard B. Haimes; Gunther Kern; Amy Kutschke; John McNulty; Virna J. A. Schuck; Gregory G. Stone; Madhusudhan Gowravaram

The compounds described herein with a spirocyclic architecture fused to a benzisoxazole ring represent a new class of antibacterial agents that operate by inhibition of DNA gyrase as corroborated in an enzyme assay and by the inhibition of precursor thymidine into DNA during cell growth. Activity resided in the configurationally lowest energy (2S,4R,4aR) diastereomer. Highly active compounds against Staphylococcus aureus had sufficiently high solubility, high plasma protein free fraction, and favorable pharmacokinetics to suggest that in vivo efficacy could be demonstrated, which was realized with compound (-)-1 in S. aureus mouse infection models. A high drug exposure NOEL on oral dosing in the rat suggested that a high therapeutic margin could be achieved. Importantly, (-)-1 was not cross-resistant with other DNA gyrase inhibitors such as fluoroquinolone and aminocoumarin antibacterials. Hence, this class shows considerable promise for the treatment of infections caused by multidrug resistant bacteria, including S. aureus.


International Journal of Antimicrobial Agents | 2017

A randomised, double-blind, phase 3 study comparing the efficacy and safety of ceftazidime/avibactam plus metronidazole versus meropenem for complicated intra-abdominal infections in hospitalised adults in Asia

Xinyu Qin; Binh Giang Tran; Min Ja Kim; Lie Wang; Dung Anh Nguyen; Qian Chen; Jie Song; Peter J. Laud; Gregory G. Stone; Joseph W. Chow

Ceftazidime/avibactam comprises the broad-spectrum cephalosporin ceftazidime and the non-β-lactam β-lactamase inhibitor avibactam. This phase 3, randomised, double-blind study (NCT01726023) assessed the efficacy and safety of ceftazidime/avibactam plus metronidazole compared with meropenem in patients with complicated intra-abdominal infection (cIAI) in Asian countries. Subjects aged 18-90 years and hospitalised with cIAI requiring surgical intervention were randomised 1:1 to receive every 8 h either: ceftazidime/avibactam (2000/500 mg, 2-h infusion) followed by metronidazole (500 mg, 60-min infusion); or meropenem (1000 mg, 30-min infusion). Non-inferiority of ceftazidime/avibactam plus metronidazole to meropenem was concluded if the lower limit of the 95% confidence interval (CI) for the between-group difference in clinical cure rate was greater than -12.5% at the test-of-cure (TOC) visit (28-35 days after randomisation) in the clinically evaluable (CE) population. Safety was also evaluated. Of 441 subjects randomised, 432 received at least one dose of study medication (ceftazidime/avibactam plus metronidazole, n = 215; meropenem, n = 217). In the CE population at the TOC visit, non-inferiority of ceftazidime/avibactam plus metronidazole to meropenem was demonstrated, with clinical cure reported for 93.8% (166/177) and 94.0% (173/184) of subjects, respectively (between-group difference, -0.2, 95% CI -5.53 to 4.97). The clinical cure rate with ceftazidime/avibactam plus metronidazole was comparable in subjects with ceftazidime-non-susceptible and ceftazidime-susceptible isolates (95.7% vs. 92.1%, respectively). Adverse events were similar between the study groups. Ceftazidime/avibactam plus metronidazole was non-inferior to meropenem in the treatment of cIAIs in Asian populations and was effective against ceftazidime-non-susceptible pathogens. No new safety concerns were identified.

Collaboration


Dive into the Gregory G. Stone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rodrigo E. Mendes

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

James Versalovic

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge