Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grégory Gadret is active.

Publication


Featured researches published by Grégory Gadret.


Optics Express | 2010

Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers

Mohammed El-Amraoui; Julien Fatome; Jean-Charles Jules; Bertrand Kibler; Grégory Gadret; Coraline Fortier; F. Smektala; I. Skripatchev; C. F. Polacchini; Younes Messaddeq; Johann Troles; Laurent Brilland; Marcin Szpulak; Gilles Renversez

We report the fabrication and characterization of the first guiding chalcogenide As(2)S(3) microstructured optical fibers (MOFs) with a suspended core. At 1.55 microm, the measured losses are approximately 0.7 dB/m or 0.35 dB/m according to the MOF core size. The fibers have been designed to present a zero dispersion wavelength (ZDW) around 2 microm. By pumping the fibers at 1.55 microm, strong spectral broadenings are obtained in both 1.8 and 45-m-long fibers by using a picosecond fiber laser.


Optics Express | 2010

Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources

Mohammed El-Amraoui; Grégory Gadret; J-C Jules; Julien Fatome; Coraline Fortier; Frédéric Désévédavy; I. Skripatchev; Younes Messaddeq; Johann Troles; Laurent Brilland; Weiqing Gao; Takenobu Suzuki; Yasutake Ohishi; F. Smektala

The aim of this paper is to present an overview of the recent achievements of our group in the fabrication and optical characterizations of As(2)S(3) microstructured optical fibers (MOFs). Firstly, we study the synthesis of high purity arsenic sulfide glasses. Then we describe the use of a versatile process using mechanical drilling for the preparation of preforms and then the drawing of MOFs including suspended core fibers. Low losses MOFs are obtained by this way, with background level of losses reaching less than 0.5 dB/m. Optical characterizations of these fibers are then reported, especially dispersion measurements. The feasibility of all-optical regeneration based on a Mamyshev regenerator is investigated, and the generation of a broadband spectrum between 1 µm and 2.6 µm by femto second pumping around 1.5 µm is presented.


Optics Express | 2012

Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers

Inna Savelii; O. Mouawad; Julien Fatome; Bertrand Kibler; Frédéric Désévédavy; Grégory Gadret; Jean-Charles Jules; Pierre-Yves Bony; Hiroyasu Kawashima; Weiqing Gao; T. Kohoutek; Takenobu Suzuki; Yasutake Ohishi; F. Smektala

In this work, we report the experimental observation of supercontinua generation in two kinds of suspended-core microstructured soft-glass optical fibers. Low loss, highly nonlinear, tellurite and As2S3 chalcogenide fibers have been fabricated and pumped close to their zero-dispersion wavelength in the femtosecond regime by means of an optical parametric oscillator pumped by a Ti:Sapphire laser. When coupled into the fibers, the femtosecond pulses result in 2000-nm bandwidth supercontinua reaching the Mid-Infrared region and extending from 750 nm to 2.8 µm in tellurite fibers and 1 µm to 3.2 µm in chalcogenide fibers, respectively.


Journal of Lightwave Technology | 2009

Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers

Julien Fatome; Coraline Fortier; Thanh Nam Nguyen; Thierry Chartier; F. Smektala; Khalida Messaad; Bertrand Kibler; S. Pitois; Grégory Gadret; Christophe Finot; Johann Troles; Frédéric Désévédavy; Patrick Houizot; Gilles Renversez; Laurent Brilland; Nicholas Traynor

In this paper, we investigate the linear and nonlinear properties of GeSbS and AsSe chalcogenide photonic crystal fibers. Through several experimental setups, we have measured the second- and third-order chromatic dispersion, the effective area, losses, birefringence, the nonlinear Kerr coefficient as well as Brillouin and Raman scattering properties.


Optics Letters | 2014

Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers

O. Mouawad; J. Picot-Clémente; Foued Amrani; C. Strutynski; Julien Fatome; Bertrand Kibler; Frédéric Désévédavy; Grégory Gadret; Jean-Charles Jules; Dinghuan Deng; Yasutake Ohishi; F. Smektala

An As2S3 fiber-based supercontinuum source that covers 3500 nm, extending from near visible to the midinfrared, is successfully reported by using a 200-fs-pulsed pump with nJ-level energy at 2.5 μm. The main features of our fiber-based source are two-fold. On the one hand, a low-loss As2S3 microstructured optical fiber has been fabricated, with typical attenuation below 2 dB/m in the 1-4 μm wavelength range. On the other hand, a 20-mm-long microstructured fiber sample is sufficient to enable a spectral broadening, spreading from 0.6 to 4.1 μm in a 40 dB dynamic range.


Applied Physics Express | 2011

Visible Light Generation and Its Influence on Supercontinuum in Chalcogenide As2S3 Microstructured Optical Fiber

Weiqing Gao; Meisong Liao; Xin Yan; Chihiro Kito; T. Kohoutek; Takenobu Suzuki; Mohammed El-Amraoui; Jean-Charles Jules; Grégory Gadret; Frédéric Désévédavy; F. Smektala; Yasutake Ohishi

We demonstrate visible light generation in chalcogenide As2S3 microstructured optical fiber. The generated visible light causes irreversible damage to the fiber core because of the high absorption coefficient of chalcogenide glasses in the visible band. The SCs (supercontinua) are measured in both untapered and tapered As2S3 fibers, no wider SC is obtained in the tapered one. The SC growth is prevented by the visible light generation since the damage to the fiber core decreases the fiber transmission substantially. This effect can be avoided by designing the fiber to enable the pump source to work in single-mode operation.


CrystEngComm | 2015

Flux growth at 1230 °C of cubic Tb2O3 single crystals and characterization of their optical and magnetic properties

Philippe Veber; Matias Velázquez; Grégory Gadret; Daniel Rytz; Mark Peltz; Rodolphe Decourt

In this work, we present the first crystal growth of cubic Tb2O3 single crystals by a controlled atmosphere flux method which uses a heavy metal free solvent working at less than half the melting temperature of this sesquioxide. Cubic millimeter-sized crystals extracted from as-grown boules are phase (powder XRD) and chemically (GDMS) pure and exhibit a Verdet constant in the visible and near-infrared spectral ranges, which is at least three times higher than that of a commercial Tb3Ga5O12 (TGG) crystal. The 1.36 mm thick crystals display a transmission coefficient higher than 77% over the 525 nm–1.38 μm spectral range. The absorption spectrum, magnetic susceptibility and specific heat measurements on the single crystals confirm the absence of detectable Tb4+ cations and other impurities.


Optics Express | 2014

Impact of optical and structural aging in As 2 S 3 microstructured optical fibers on mid-infrared supercontinuum generation

O. Mouawad; Foued Amrani; Bertrand Kibler; J. Picot-Clémente; C. Strutynski; Julien Fatome; Frédéric Désévédavy; Grégory Gadret; Jean-Charles Jules; O. Heintz; Lesniewska E; F. Smektala

We analyze optical and structural aging in As₂S₃ microstructured optical fibers (MOFs) that may have an impact on mid-infrared supercontinuum generation. A strong alteration of optical transparency at the fundamental OH absorption peak is measured for high-purity As₂S₃ MOF stored in atmospheric conditions. The surface evolution and inherent deviation of corresponding chemical composition confirm that the optical and chemical properties of MOFs degrade upon exposure to ambient conditions because of counteractive surface process. This phenomenon substantially reduces the optical quality of the MOFs and therefore restrains the spectral expansion of generated supercontinuum. This aging process is well confirmed by the good matching between previous experimental results and the reported numerical simulations based on the generalized nonlinear Schrödinger equation.


Journal of The Optical Society of America B-optical Physics | 2009

Comprehensive formulation of temperature-dependent dispersion of optical materials: illustration with case of temperature tuning of a mid-IR HgGa 2 S 4 OPO

J. Mangin; Gabriel Mennerat; Grégory Gadret; V. V. Badikov; Jean-Claude de Miscault

The temperature dependence of refractive indices of optical materials is characterized in this work by what we call their normalized thermo-optic coefficients. These are determined experimentally through interferometric measurements of thermal expansion and of changes in optical thickness at a few laser wavelengths as function of temperature. A suitable vectorial formalism applied to these data allows predicting the thermal evolution of the refractive index all over the useful range of transparency. The validity and reliability of our methodology is demonstrated through temperature tuning of a mid-IR HgGa2S4 optical parametric oscillator (OPO) pumped at 1.0642 μm by a Nd:YAG laser. Measured thermal variation of both signal and idler wavelengths agrees very well with the predicted one.


Journal of The Optical Society of America B-optical Physics | 2008

Enhanced photorefractive properties of Bi-doped Sn2P2S6

I. V. Kedyk; P. Mathey; Grégory Gadret; Olivier Bidault; Alexander A. Grabar; I. M. Stoika; Yulian M. Vysochanskii

Enhanced photorefractive properties of tin hypothiodiphosphate (Sn2P2S6) crystals as a result of Bi doping are presented. These new crystals were obtained by the vapor-transport technique using stoichiometric Sn2P2S6 composition with an additional amount of Bi up to 0.5 mol. % in the initial compound. The bandgap edges of the obtained crystals are located at ~750 nm and shift toward the red wavelengths with increasing Bi concentration. Sn2P2S6:Bi crystals are found to exhibit larger two-beam coupling gain coefficients (up to 17 cm−1 at a wavelength of 854 nm) as compared to (i) pure Sn2P2S6 (2.5 cm−1 at 854 nm), (ii) Sn2P2S6 crystals modified by the growth conditions (14 cm−1 at 860 nm), and (iii) Te-doped Sn2P2S6 (8 cm−1 at 860 nm). At the same time, for an intensity of 1.3 W/cm2 at 854 nm, buildup times of 0.9 and 2.5 ms at grating spacings of Λ=9.8 and 1.3 μm, respectively, are found; Bi-doped Sn2P2S6 crystals are the fastest among all the presently known Sn2P2S6 crystals operating at near-infrared wavelengths.

Collaboration


Dive into the Grégory Gadret's collaboration.

Top Co-Authors

Avatar

F. Smektala

University of Burgundy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bertrand Kibler

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Mathey

University of Burgundy

View shared research outputs
Top Co-Authors

Avatar

Yasutake Ohishi

Toyota Technological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

O. Mouawad

University of Burgundy

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge