Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory J. Baker is active.

Publication


Featured researches published by Gregory J. Baker.


Neoplasia | 2014

Mechanisms of Glioma Formation: Iterative Perivascular Glioma Growth and Invasion Leads to Tumor Progression, VEGF-Independent Vascularization, and Resistance to Antiangiogenic Therapy

Gregory J. Baker; Viveka Nand Yadav; Sébastien Motsch; Carl Koschmann; Anda Alexandra Calinescu; Yohei Mineharu; Sandra Camelo-Piragua; Daniel A. Orringer; Serguei Bannykh; W. S. Nichols; Ana C. deCarvalho; Tom Mikkelsen; Maria G. Castro; Pedro R. Lowenstein

As glioma cells infiltrate the brain they become associated with various microanatomic brain structures such as blood vessels, white matter tracts, and brain parenchyma. How these distinct invasion patterns coordinate tumor growth and influence clinical outcomes remain poorly understood. We have investigated how perivascular growth affects glioma growth patterning and response to antiangiogenic therapy within the highly vascularized brain. Orthotopically implanted rodent and human glioma cells are shown to commonly invade and proliferate within brain perivascular space. This form of brain tumor growth and invasion is also shown to characterize de novo generated endogenous mouse brain tumors, biopsies of primary human glioblastoma (GBM), and peripheral cancer metastasis to the human brain. Perivascularly invading brain tumors become vascularized by normal brain microvessels as individual glioma cells use perivascular space as a conduit for tumor invasion. Agent-based computational modeling recapitulated biological perivascular glioma growth without the need for neoangiogenesis. We tested the requirement for neoangiogenesis in perivascular glioma by treating animals with angiogenesis inhibitors bevacizumab and DC101. These inhibitors induced the expected vessel normalization, yet failed to reduce tumor growth or improve survival of mice bearing orthotopic or endogenous gliomas while exacerbating brain tumor invasion. Our results provide compelling experimental evidence in support of the recently described failure of clinically used antiangiogenics to extend the overall survival of human GBM patients.


Neuroscience Letters | 2012

Gene Therapy for Brain Tumors: Basic Developments and Clinical Implementation

Hikmat Assi; Marianela Candolfi; Gregory J. Baker; Yohei Mineharu; Pedro R. Lowenstein; Maria G. Castro

Glioblastoma multiforme (GBM) is the most common and deadliest of adult primary brain tumors. Due to its invasive nature and sensitive location, complete resection remains virtually impossible. The resistance of GBM against chemotherapy and radiotherapy necessitate the development of novel therapies. Gene therapy is proposed for the treatment of brain tumors and has demonstrated pre-clinical efficacy in animal models. Here we review the various experimental therapies that have been developed for GBM including both cytotoxic and immune stimulatory approaches. We also review the combined conditional cytotoxic immune stimulatory therapy that our lab has developed which is dependent on the adenovirus mediated expression of the conditional cytotoxic gene, Herpes Simplex Type 1 Thymidine Kinase (TK) and the powerful DC growth factor Fms-like tyrosine kinase 3 ligand (Flt3L). Combined delivery of these vectors elicits tumor cell death and an anti-tumor adaptive immune response that requires TLR2 activation. The implications of our studies indicate that the combined cytotoxic and immunotherapeutic strategies are effective strategies to combat deadly brain tumors and warrant their implementation in human Phase I clinical trials for GBM.


Molecular Systems Biology | 2017

Adaptive resistance of melanoma cells to RAF inhibition via reversible induction of a slowly dividing de‐differentiated state

Mohammad Fallahi-Sichani; Verena Becker; Benjamin Izar; Gregory J. Baker; Jia-Ren Lin; Sarah A. Boswell; Parin Shah; Asaf Rotem; Levi A. Garraway; Peter K. Sorger

Treatment of BRAF‐mutant melanomas with MAP kinase pathway inhibitors is paradigmatic of the promise of precision cancer therapy but also highlights problems with drug resistance that limit patient benefit. We use live‐cell imaging, single‐cell analysis, and molecular profiling to show that exposure of tumor cells to RAF/MEK inhibitors elicits a heterogeneous response in which some cells die, some arrest, and the remainder adapt to drug. Drug‐adapted cells up‐regulate markers of the neural crest (e.g., NGFR), a melanocyte precursor, and grow slowly. This phenotype is transiently stable, reverting to the drug‐naïve state within 9 days of drug withdrawal. Transcriptional profiling of cell lines and human tumors implicates a c‐Jun/ECM/FAK/Src cascade in de‐differentiation in about one‐third of cell lines studied; drug‐induced changes in c‐Jun and NGFR levels are also observed in xenograft and human tumors. Drugs targeting the c‐Jun/ECM/FAK/Src cascade as well as BET bromodomain inhibitors increase the maximum effect (Emax) of RAF/MEK kinase inhibitors by promoting cell killing. Thus, analysis of reversible drug resistance at a single‐cell level identifies signaling pathways and inhibitory drugs missed by assays that focus on cell populations.


Clinical Pharmacology & Therapeutics | 2010

Study of the Efficacy, Biodistribution, and Safety Profile of Therapeutic Gutless Adenovirus Vectors as a Prelude to a Phase I Clinical Trial for Glioblastoma

Akm Ghulam Muhammad; Mariana Puntel; Marianela Candolfi; Alireza Salem; Kader Yagiz; Catherine Farrokhi; Kurt M. Kroeger; Weidong Xiong; James F. Curtin; Chunyan Liu; K Lawrence; Niyati Bondale; Jonathan Lerner; Gregory J. Baker; David Foulad; Robert N. Pechnick; Donna Palmer; Philip Ng; Pedro R. Lowenstein; Maria G. Castro

Glioblastoma multiforme (GBM) is the most common and most aggressive primary brain tumor in humans. Systemic immunity against gene therapy vectors has been shown to hamper therapeutic efficacy; however, helper‐dependent high‐capacity adenovirus (HC‐Ad) vectors elicit sustained transgene expression, even in the presence of systemic anti‐adenoviral immunity. We engineered HC‐Ads encoding the conditional cytotoxic herpes simplex type 1 thymidine kinase (TK) and the immunostimulatory cytokine fms‐like tyrosine kinase ligand 3 (Flt3L). Flt3L expression is under the control of the regulatable Tet‐ON system. In anticipation of a phase I clinical trial for GBM, we assessed the therapeutic efficacy, biodistribution, and clinical and neurotoxicity with escalating doses of HC‐Ad‐TetOn‐Flt3L + HC‐Ad‐TK in rats. Intratumoral administration of these therapeutic HC‐Ads in rats bearing large intracranial GBMs led to long‐term survival in _70% of the animals and development of antiglioma immunological memory without signs of neuropathology or systemic toxicity. Systemic anti‐adenoviral immunity did not affect therapeutic efficacy. These data support the idea that it would be useful to develop HC‐Ad vectors further as a therapeutic gene‐delivery platform to implement GBM phase I clinical trials.


Cancer Research | 2014

Natural killer cells eradicate galectin-1-deficient glioma in the absence of adaptive immunity

Gregory J. Baker; Peter Chockley; Viveka Nand Yadav; Robert Doherty; Michael Ritt; Sivaraj Sivaramakrishnan; Maria G. Castro; Pedro R. Lowenstein

Natural killer (NK) cells safeguard against early tumor formation by destroying transformed target cells in a process referred to as NK immune surveillance. However, the immune escape mechanisms used by malignant brain tumors to subvert this innate type of immune surveillance remain unclear. Here we show that malignant glioma cells suppress NK immune surveillance by overexpressing the β-galactoside-binding lectin galectin-1. Conversely, galectin-1-deficient glioma cells could be eradicated by host NK cells before the initiation of an antitumor T-cell response. In vitro experiments demonstrated that galectin-1-deficient GL26-Cit glioma cells are ∼3-fold more sensitive to NK-mediated tumor lysis than galectin-1-expressing cells. Our findings suggest that galectin-1 suppression in human glioma could improve patient survival by restoring NK immune surveillance that can eradicate glioma cells. Cancer Res; 74(18); 5079-90. ©2014 AACR.


Nucleic Acids Research | 2006

Sequence effects of aminofluorene-modified DNA duplexes: thermodynamic and circular dichroism properties

Srinivasa Rao Meneni; Rhijuta D'Mello; Gregory Norigian; Gregory J. Baker; Lan Gao; M. Paul Chiarelli; Bongsup P. Cho

Circular dichroism (CD) and UV-melting experiments were conducted with 16 oligodeoxynucleotides modified by the carcinogen 2-aminofluorene, whose sequence around the lesion was varied systematically [d(CTTCTNG[AF]NCCTC), N = G, A, C, T], to gain insight into the factors that determine the equilibrium between base-displaced stacked (S) and external B-type (B) duplex conformers. Differing stabilities among the duplexes can be attributed to different populations of S and B conformers. The AF modification always resulted in sequence-dependent thermal (Tm) and thermodynamic (−ΔG°) destabilization. The population of B-type conformers derived from eight selected duplexes (i.e. -AG*N- and -CG*N-) was inversely proportional to the −ΔG° and Tm values, which highlights the importance of carcinogen/base stacking in duplex stabilization even in the face of disrupted Watson–Crick base pairing in S-conformation. CD studies showed that the extent of the adduct-induced negative ellipticities in the 290–350 nm range is correlated linearly with −ΔG° and Tm, but inversely with the population of B-type conformations. Taken together, these results revealed a unique interplay between the extent of carcinogenic interaction with neighboring base pairs and the thermodynamic properties of the AF-modified duplexes. The sequence-dependent S/B heterogeneities have important implications in understanding how arylamine–DNA adducts are recognized in nucleotide excision repair.


Immunotherapy | 2015

Overview of current immunotherapeutic strategies for glioma.

Anda Alexandra Calinescu; Neha Kamran; Gregory J. Baker; Yohei Mineharu; Pedro R. Lowenstein; Maria G. Castro

In the last decade, numerous studies of immunotherapy for malignant glioma (glioblastoma multiforme) have brought new knowledge and new hope for improving the prognosis of this incurable disease. Some clinical trials have reached Phase III, following positive outcomes in Phase I and II, with respect to safety and immunological end points. Results are encouraging especially when considering the promise of sustained efficacy by inducing antitumor immunological memory. Progress in understanding the mechanisms of tumor-induced immune suppression led to the development of drugs targeting immunosuppressive checkpoints, which are used in active clinical trials for glioblastoma multiforme. Insights related to the heterogeneity of the disease bring new challenges for the management of glioma and underscore a likely cause of therapeutic failure. An emerging therapeutic strategy is represented by a combinatorial, personalized approach, including the standard of care: surgery, radiation, chemotherapy with added active immunotherapy and multiagent targeting of immunosuppressive checkpoints.


Clinical Cancer Research | 2014

Blocking Immunosuppressive Checkpoints for Glioma Therapy: The More the Merrier!

Maria G. Castro; Gregory J. Baker; Pedro R. Lowenstein

Immunosuppressive checkpoints mediated by IDO, CTLA4, and PD1/PDL1 play a critical role in glioma progression and the efficacy of immunotherapies. Combined blockade of these immunosuppressive checkpoints in a glioma model elicited long-term survival. This combined blockade adds to the armamentarium of anti-glioma therapies, which could be implemented in clinical trials. Clin Cancer Res; 20(20); 5147–9. ©2014 AACR.


Oncotarget | 2016

CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation induced apoptosis: A genetic knockdown study.

Viveka Nand Yadav; Daniel Zamler; Gregory J. Baker; Padma Kadiyala; Anat Erdreich-Epstein; Ana deCarvalho; Tom Mikkelsen; Maria G. Castro; Pedro R. Lowenstein

Glioblastoma (GBM) is a highly invasive brain tumor. Perivascular invasion, autovascularization and vascular co-option occur throughout the disease and lead to tumor invasion and progression. The molecular basis for perivascular invasion, i.e., the interaction of glioma tumor cells with endothelial cells is not well characterized. Recent studies indicate that glioma cells have increased expression of CXCR4. We investigated the in-vivo role of CXCR4 in perivascular invasion of glioma cells using shRNA-mediated knock down of CXCR4. We show that primary cultures of human glioma stem cells HF2303 and mouse glioma GL26-Cit cells exhibit significant migration towards human (HBMVE) and mouse (MBVE) brain microvascular endothelial cells. Blocking CXCR4 on tumor cells with AMD3100 in-vitro, inhibits migration of GL26-Cit and HF2303 toward MBVE and HBMVE cells. Additionally, genetic down regulation of CXCR4 in mouse glioma GL26-Cit cells inhibits their in-vitro migration towards MBVE cells; in an in-vivo intracranial mouse model, these cells display reduced tumor growth and perivascular invasion, leading to increased survival. Quantitative analysis of brain sections showed that CXCR4 knockdown tumors are less invasive. Lastly, we tested the effects of radiation on CXCR4 knock down GL26-Cit cells in an orthotopic brain tumor model. Radiation treatment increased apoptosis of CXCR4 downregulated tumor cells and prolonged median survival. In summary, our data suggest that CXCR4 signaling is critical for perivascular invasion of GBM cells and targeting this receptor makes tumors less invasive and more sensitive to radiation therapy. Combination of CXCR4 knock down and radiation treatment might improve the efficacy of GBM therapy.


OncoImmunology | 2016

Natural killer cells require monocytic Gr-1+/CD11b+ myeloid cells to eradicate orthotopically engrafted glioma cells

Gregory J. Baker; Peter Chockley; Daniel Zamler; Maria G. Castro; Pedro R. Lowenstein

ABSTRACT Malignant gliomas are resistant to natural killer (NK) cell immune surveillance. However, the mechanisms used by these cancers to suppress antitumor NK cell activity remain poorly understood. We have recently reported on a novel mechanism of innate immune evasion characterized by the overexpression of the carbohydrate-binding protein galectin-1 by both mouse and rat malignant glioma. Here, we investigate the cytokine profile of galectin-1-deficient GL26 cells and describe the process by which these tumors are targeted by the early innate immune system in RAG1−/− and C57BL/6J mice. Our data reveal that galectin-1 knockdown in GL26 cells heightens their inflammatory status leading to the rapid recruitment of Gr-1+/CD11b+ myeloid cells and NK1.1+ NK cells into the brain tumor microenvironment, culminating in tumor clearance. We show that immunodepletion of Gr-1+ myeloid cells in RAG1−/− mice permits the growth of galectin-1-deficient glioma despite the presence of NK cells, thus demonstrating an essential role for myeloid cells in the clearance of galectin-1-deficient glioma. Further characterization of tumor-infiltrating Gr-1+/CD11b+ cells reveals that these cells also express CCR2 and Ly-6C, markers consistent with inflammatory monocytes. Our results demonstrate that Gr-1+/CD11b+ myeloid cells, often referred to as myeloid-derived suppressor cells (MDSCs), are required for antitumor NK cell activity against galectin-1-deficient GL26 glioma. We conclude that glioma-derived galectin-1 represents an important factor in dictating the phenotypic behavior of monocytic Gr-1+/CD11b+ myeloid cells. Galectin-1 suppression may be a valuable treatment approach for clinical glioma by promoting their innate immune-mediated recognition and clearance through the concerted effort of innate myeloid and lymphoid cell lineages.

Collaboration


Dive into the Gregory J. Baker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hikmat Assi

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge