Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory J. Cole is active.

Publication


Featured researches published by Gregory J. Cole.


FEBS Journal | 2007

Biomechanical properties of native basement membranes

Joseph Candiello; Manimalha Balasubramani; Emmanuel M. Schreiber; Gregory J. Cole; Ulrike Mayer; Willi Halfter; Hai Lin

Basement membranes are sheets of extracellular matrix that separate epithelia from connective tissues and outline muscle fibers and the endothelial lining of blood vessels. A major function of basement membranes is to establish and maintain stable tissue borders, exemplified by frequent vascular breaks and a disrupted pial and retinal surface in mice with mutations or deletions of basement membrane proteins. To directly measure the biomechanical properties of basement membranes, chick and mouse inner limiting membranes were examined by atomic force microscopy. The inner limiting membrane is located at the retinal‐vitreal junction and its weakening due to basement membrane protein mutations leads to inner limiting membrane rupture and the invasion of retinal cells into the vitreous. Transmission electron microscopy and western blotting has shown that the inner limiting membrane has an ultrastructure and a protein composition typical for most other basement membranes and, thus, provides a suitable model for determining their biophysical properties. Atomic force microscopy measurements of native chick basement membranes revealed an increase in thickness from 137 nm at embryonic day 4 to 402 nm at embryonic day 9, several times thicker that previously determined by transmission electron microscopy. The change in basement membrane thickness was accompanied by a large increase in apparent Youngs modulus from 0.95 MPa to 3.30 MPa. The apparent Youngs modulus of the neonatal and adult mouse retinal basement membranes was in a similar range, with 3.81 MPa versus 4.07 MPa, respectively. These results revealed that native basement membranes are much thicker than previously determined. Their high mechanical strength explains why basement membranes are essential in stabilizing blood vessels, muscle fibers and the pial border of the central nervous system.


Matrix Biology | 2010

Age-dependent changes in the structure, composition and biophysical properties of a human basement membrane.

Joseph Candiello; Gregory J. Cole; Willi Halfter

Basement membranes (BMs) are considered to be uniform, approximately 100 nm-thin extracellular matrix sheets that serve as a substrate for epithelial cells, endothelial cells and myotubes. To find out whether BMs maintain their ultrastructure, protein composition and biophysical properties throughout life the natural aging history of the human inner limiting membranes (ILM) was investigated. The ILM is a BM at the vitreal surface of the retina that connects the retina with the vitreous. Transmission electron microscopy (TEM) showed that the ILM steadily increases in thickness from 70 nm at fetal stages to several microns at age 90. By the age of 20, the ILM loses its laminated structure to become an amorphous and very irregular extracellular matrix layer. Atomic force microscopy (AFM) showed that the native, hydrated ILMs are on average 4-fold thicker than the dehydrated ILMs as seen by TEM and that their thickness is prominently determined by its water-binding proteoglycans. The morphological changes are accompanied by age-related changes in the biochemical composition, whereby the relative concentrations of collagen IV and agrin increase, and the concentration of laminin decreases with age. Force-indentation measurements by AFM also showed that ILMs become increasingly stiffer with advancing age. The data suggest that BMs from other human tissues may undergo similar age-related changes.


Cell | 2011

Assembly of Lamina-Specific Neuronal Connections by Slit Bound to Type IV Collagen

Tong Xiao; Wendy Staub; Estuardo Robles; Nathan J. Gosse; Gregory J. Cole; Herwig Baier

The mechanisms that generate specific neuronal connections in the brain are under intense investigation. In zebrafish, retinal ganglion cells project their axons into at least six layers within the neuropil of the midbrain tectum. Each axon elaborates a single, planar arbor in one of the target layers and forms synapses onto the dendrites of tectal neurons. We show that the laminar specificity of retinotectal connections does not depend on self-sorting interactions among RGC axons. Rather, tectum-derived Slit1, signaling through axonal Robo2, guides neurites to their target layer. Genetic and biochemical studies indicate that Slit binds to Dragnet (Col4a5), a type IV Collagen, which forms the basement membrane on the surface of the tectum. We further show that radial glial endfeet are required for the basement-membrane anchoring of Slit. We propose that Slit1 signaling, perhaps in the form of a superficial-to-deep gradient, presents laminar positional cues to ingrowing retinal axons.


Birth Defects Research Part A-clinical and Molecular Teratology | 2011

Agrin function associated with ocular development is a target of ethanol exposure in embryonic zebrafish.

Chengjin Zhang; Qwan M. Turton; Shanta Mackinnon; Kathleen K. Sulik; Gregory J. Cole

BACKGROUND Alcohol (ethanol) is a teratogen known to affect the developing eyes, face, and brain. Among the ocular defects in fetal alcohol spectrum disorder (FASD) are microphthalmia and optic nerve hypoplasia. Employing zebrafish as an FASD model provides an excellent system to analyze the molecular basis of prenatal ethanol exposure-induced defects because embryos can be exposed to ethanol at defined developmental stages and affected genetic pathways can be examined. We have previously shown that disruption of agrin function in zebrafish embryos produces microphthalmia and optic nerve hypoplasia. METHODS Zebrafish embryos were exposed to varying concentrations of ethanol in the absence or presence of morpholino oligonucleotides (MOs) that disrupt agrin function. In situ hybridization was used to analyze ocular gene expression as a consequence of ethanol exposure and agrin knockdown. Morphologic analysis of zebrafish embryos was also conducted. RESULTS Acute ethanol exposure induces diminished agrin gene expression in zebrafish eyes and, importantly, combined treatment with subthreshold levels of agrin MO and ethanol produces pronounced microphthalmia, markedly reduces agrin gene expression, and perturbs Pax6a and Mbx gene expression. Microphthalmia produced by combined agrin MO and ethanol treatment was rescued by sonic hedgehog (Shh) mRNA overexpression, suggesting that ethanol-mediated disruption of agrin expression results in disrupted Shh function. CONCLUSIONS These studies illustrate the strong potential for using zebrafish as a model to aid in defining the molecular basis for ethanols teratogenic effects. The results of this work suggest that agrin expression and function may be a target of ethanol exposure during embryogenesis.


Birth Defects Research Part A-clinical and Molecular Teratology | 2013

Forebrain and hindbrain development in zebrafish is sensitive to ethanol exposure involving agrin, Fgf, and sonic hedgehog function.

Chengjin Zhang; Princess Ojiaku; Gregory J. Cole

BACKGROUND Ethanol is a teratogen that affects numerous developmental processes in the nervous system, which includes development and survival of GABAergic and glutamatergic neurons. Possible molecular mechanisms accounting for ethanols effects on nervous system development include perturbed fibroblast growth factor (Fgf) and Sonic hedgehog (Shh) signaling. In zebrafish, forebrain GABAergic neuron development is dependent on Fgf19 and Shh signaling. The present study was conducted to test the hypothesis that ethanol affects GABAergic and glutamatergic neuron development by disrupting Fgf, Shh, and agrin function. METHODS Zebrafish embryos were exposed to varying concentrations of ethanol during a range of developmental stages, in the absence or presence of morpholino oligonucleotides (MOs) that disrupt agrin or Shh function. In situ hybridization was used to analyze glutamic acid decarboxylase (GAD1) gene expression, as well as markers of glutamatergic neurons. RESULTS Acute ethanol exposure results in marked reduction in GAD1 gene expression in forebrain and hindbrain, and reduction of glutamatergic neuronal markers in hindbrain. Subthreshold ethanol exposure, combined with agrin or Shh MO treatment, produces a similar diminution in expression of markers for GABAergic and glutamatergic neurons. Consistent with the ethanol effects on Fgf and Shh pathways, Fgf19, Fgf8, or Shh mRNA overexpression rescues ethanol-induced decreases in GAD1 and Atonal1a gene expression. CONCLUSIONS These studies demonstrate that GABAergic and glutamatergic neuron development in zebrafish forebrain or cerebellum is sensitive to ethanol exposure, and provides additional evidence that a signaling pathway involving agrin, Fgfs and Shh may be a critical target of ethanol exposure during zebrafish embryogenesis.


Mechanisms of Development | 2008

Olfactomedin-2 mediates development of the anterior central nervous system and head structures in zebrafish

Ju-Ahng Lee; Robert R. H. Anholt; Gregory J. Cole

Olfactomedins comprise a diverse family of secreted glycoproteins, which includes noelin, tiarin, pancortin and gliomedin, implicated in development of the nervous system, and the glaucoma-associated protein myocilin. Here we show in zebrafish that olfactomedin-2 (OM2) is a developmentally regulated gene, and that knockdown of protein expression by morpholino antisense oligonucleotides leads to perturbations of nervous system development. Interference with OM2 expression results in impaired development of branchiomotor neurons, specific disruption of the late phase branchiomotor axon guidance, and affects development of the caudal pharyngeal arches, olfactory pits, eyes and optic tectum. Effects of OM2 knockdown on eye development are likely associated with Pax6 signaling in developing eyes, as Pax6.1 and Pax6.2 mRNA expression patterns are altered in the eyes of OM2 morphants. The specific absence of most cartilaginous structures in the pharyngeal arches indicates that the observed craniofacial phenotypes may be due to perturbed differentiation of cranial neural crest cells. Our studies show that this member of the olfactomedin protein family is an important regulator of development of the anterior nervous system.


Neurotoxicology and Teratology | 2015

Long-term behavioral impairment following acute embryonic ethanol exposure in zebrafish.

Jordan M. Bailey; Anthony N. Oliveri; Chengjin Zhang; Jared M. Frazier; Shanta Mackinnon; Gregory J. Cole; Edward D. Levin

BACKGROUND Developmental exposure to ethanol has long been known to cause persisting neurobehavioral impairment. However, the neural and behavioral mechanisms underlying these deficits and the importance of exposure timing are not well-characterized. Given the importance of timing and sequence in neurodevelopment it would be expected that alcohol intoxication at different developmental periods would result in distinct neurobehavioral consequences. METHODS Zebrafish embryos were exposed to ethanol (0%, 1%, 3%) at either 8-10 or 24-27 h post-fertilization (hpf) then reared to adolescence and evaluated on several behavioral endpoints. Habituation to a repeated environmental stimulus and overall sensorimotor function were assessed using a tap startle test; measurements of anxiety and exploration behavior were made following introduction to a novel tank; and spatial discrimination learning was assessed using aversive control in a three-chambered apparatus. Overt signs of dysmorphogenesis were also scored (i.e. craniofacial malformations, including eye diameter and midbrain-hindbrain boundary morphology). RESULTS Ethanol treated fish were more active both at baseline and following a tap stimulus compared to the control fish and were hyperactive when placed in a novel tank. These effects were more prominent following exposure at 24-27 hpf than with the earlier exposure window, for both dose groups. Increases in physical malformation were only present in the 3% ethanol group; all malformed fish were excluded from behavioral testing. DISCUSSION These results suggest specific domains of behavior are affected following ethanol exposure, with some but not all of the tests revealing significant impairment. The behavioral phenotypes following distinct exposure windows described here can be used to help link cellular and molecular mechanisms of developmental ethanol exposure to functional neurobehavioral effects.


International Review of Cell and Molecular Biology | 2012

Effects of Ethanol Exposure on Nervous System Development in Zebrafish

Gregory J. Cole; Chengjin Zhang; Princess Ojiaku; Vanessa Bell; Shailendra Devkota; Somnath Mukhopadhyay

Alcohol (ethanol) is a teratogen that adversely affects nervous system development in a wide range of animal species. In humans numerous congenital abnormalities arise as a result of fetal alcohol exposure, leading to a spectrum of disorders referred to as fetal alcohol spectrum disorder (FASD). These abnormalities include craniofacial defects as well as neurological defects that affect a variety of behaviors. These human FASD phenotypes are reproduced in the rodent central nervous system (CNS) following prenatal ethanol exposure. While the study of ethanol effects on zebrafish development has been more limited, several studies have shown that different strains of zebrafish exhibit differential susceptibility to ethanol-induced cyclopia, as well as behavioral deficits. Molecular mechanisms underlying the effects of ethanol on CNS development also appear to be shared between rodent and zebrafish. Thus, zebrafish appear to recapitulate the observed effects of ethanol on human and mouse CNS development, indicating that zebrafish can serve as a complimentary developmental model system to study the molecular basis of FASD. Recent studies examining the effect of ethanol exposure on zebrafish nervous system development are reviewed, with an emphasis on attempts to elucidate possible molecular pathways that may be impacted by developmental ethanol exposure. Recent work from our laboratories supports a role for perturbed extracellular matrix function in the pathology of ethanol exposure during zebrafish CNS development. The use of the zebrafish model to assess the effects of ethanol exposure on adult nervous system function as manifested by changes in zebrafish behavior is also discussed.


Developmental Neurobiology | 2008

Retina development in zebrafish requires the heparan sulfate proteoglycan agrin

I-Hsuan Liu; Chengjin Zhang; Min Jung Kim; Gregory J. Cole

Recent studies from our laboratory have begun to elucidate the role of agrin in zebrafish development. One agrin morphant phenotype that results from agrin knockdown is microphthalmia (reduced eye size). To begin to understand the mechanisms underlying the role of agrin in eye development, we have analyzed retina development in agrin morphants. Retinal differentiation is impaired in agrin morphants, with retinal lamination being disrupted following agrin morpholino treatment. Pax 6.1 and Mbx1 gene expression, markers of eye development, are markedly reduced in agrin morphants. Formation of the optic fiber layer of the zebrafish retina is also impaired, exhibited as both reduced size of the optic fiber layer, and disruption of retinal ganglion cell axon growth to the optic tectum. The retinotectal topographic projection to the optic tectum is perturbed in agrin morphants in association with a marked loss of heparan sulfate expression in the retinotectal pathway, with this phenotype resembling retinotectal phenotypes observed in mutant zebrafish lacking enzymes for heparan sulfate synthesis. Treatment of agrin morphants with a fibroblast growth factor (Fgf) receptor inhibitor, rescue of the retinal lamination phenotype by transplantation of Fgf8‐coated beads, and disruption of both the expression of Fgf‐dependent genes and activation of ERK in agrin morphants provides evidence that agrin modulation of Fgf function contributes to retina development. Collectively, these agrin morphant phenotypes provide support for a crucial role of agrin in retina development and formation of an ordered retinotectal topographic map in the optic tectum of zebrafish.


Neurotoxicology and Teratology | 2014

Molecular and morphological changes in zebrafish following transient ethanol exposure during defined developmental stages

Chengjin Zhang; Jared M. Frazier; Hao Chen; Yao Liu; Ju-Ahng Lee; Gregory J. Cole

Alcohol is a teratogen that has diverse effects on brain and craniofacial development, leading to a constellation of developmental disorders referred to as fetal alcohol spectrum disorder (FASD). The molecular basis of ethanol insult remains poorly understood, as does the relationship between molecular and behavioral changes as a consequence of prenatal ethanol exposure. Zebrafish embryos were exposed to a range of ethanol concentrations (0.5-5.0%) during defined developmental stages, and examined for morphological phenotypes characteristic of FASD. Embryos were also analyzed by in situ hybridization for changes in expression of defined cell markers for neural cell types that are sonic hedgehog-dependent. We show that transient binge-like ethanol exposures during defined developmental stages, such as early gastrulation and early neurulation, result in a range of phenotypes and changes in expression of Shh-dependent genes. The severity of fetal alcohol syndrome (FAS) morphological phenotypes, such as microphthalmia, depends on the embryonic stage and concentration of alcohol exposure, as does diminution of retinal Pax6a or forebrain and hindbrain GAD1 gene expression. We also show that changes in eye and brain morphology correlate with changes in Pax6a and GAD1 gene expression. Our results therefore show that transient binge-like ethanol exposures in zebrafish embryos produce the stereotypical morphological phenotypes of FAS, with the severity of phenotypes depending on the developmental stage and alcohol concentration of exposure.

Collaboration


Dive into the Gregory J. Cole's collaboration.

Top Co-Authors

Avatar

Chengjin Zhang

North Carolina Central University

View shared research outputs
Top Co-Authors

Avatar

Ju-Ahng Lee

North Carolina Central University

View shared research outputs
Top Co-Authors

Avatar

Chengjin Zhang

North Carolina Central University

View shared research outputs
Top Co-Authors

Avatar

Bo Hu

North Carolina Central University

View shared research outputs
Top Co-Authors

Avatar

Jared M. Frazier

North Carolina Central University

View shared research outputs
Top Co-Authors

Avatar

Shanta Mackinnon

North Carolina Central University

View shared research outputs
Top Co-Authors

Avatar

Willi Halfter

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Xiaoxin Chen

North Carolina Central University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge