Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory J. Quirk is active.

Publication


Featured researches published by Gregory J. Quirk.


Nature | 2002

Neurons in medial prefrontal cortex signal memory for fear extinction

Mohammed R. Milad; Gregory J. Quirk

Conditioned fear responses to a tone previously paired with a shock diminish if the tone is repeatedly presented without the shock, a process known as extinction. Since Pavlov it has been hypothesized that extinction does not erase conditioning, but forms a new memory. Destruction of the ventral medial prefrontal cortex, which consists of infralimbic and prelimbic cortices, blocks recall of fear extinction, indicating that medial prefrontal cortex might store long-term extinction memory. Here we show that infralimbic neurons recorded during fear conditioning and extinction fire to the tone only when rats are recalling extinction on the following day. Rats that froze the least showed the greatest increase in infralimbic tone responses. We also show that conditioned tones paired with brief electrical stimulation of infralimbic cortex elicit low freezing in rats that had not been extinguished. Thus, stimulation resembling extinction-induced infralimbic tone responses is able to simulate extinction memory. We suggest that consolidation of extinction learning potentiates infralimbic activity, which inhibits fear during subsequent encounters with fear stimuli.


Neuropsychopharmacology | 2008

Neural Mechanisms of Extinction Learning and Retrieval

Gregory J. Quirk; Devin Mueller

Emotional learning is necessary for individuals to survive and prosper. Once acquired, however, emotional associations are not always expressed. Indeed, the regulation of emotional expression under varying environmental conditions is essential for mental health. The simplest form of emotional regulation is extinction, in which conditioned responding to a stimulus decreases when the reinforcer is omitted. Two decades of research on the neural mechanisms of fear conditioning have laid the groundwork for understanding extinction. In this review, we summarize recent work on the neural mechanisms of extinction learning. Like other forms of learning, extinction occurs in three phases: acquisition, consolidation, and retrieval, each of which depends on specific structures (amygdala, prefrontal cortex, hippocampus) and molecular mechanisms (receptors and signaling pathways). Pharmacological methods to facilitate consolidation and retrieval of extinction, for both aversive and appetitive conditioning, are setting the stage for novel treatments for anxiety disorders and addictions.


Nature Reviews Neuroscience | 2004

Neuronal signalling of fear memory

Stephen Maren; Gregory J. Quirk

The learning and remembering of fearful events depends on the integrity of the amygdala, but how are fear memories represented in the activity of amygdala neurons? Here, we review recent electrophysiological studies indicating that neurons in the lateral amygdala encode aversive memories during the acquisition and extinction of Pavlovian fear conditioning. Studies that combine unit recording with brain lesions and pharmacological inactivation provide evidence that the lateral amygdala is a crucial locus of fear memory. Extinction of fear memory reduces associative plasticity in the lateral amygdala and involves the hippocampus and prefrontal cortex. Understanding the signalling of aversive memory by amygdala neurons opens new avenues for research into the neural systems that support fear behaviour.


Biological Psychiatry | 2007

Recall of Fear Extinction in Humans Activates the Ventromedial Prefrontal Cortex and Hippocampus in Concert

Mohammed R. Milad; Christopher I. Wright; Scott P. Orr; Roger K. Pitman; Gregory J. Quirk; Scott L. Rauch

BACKGROUND Extinction of conditioned fear is thought to form a new safety memory that is expressed in the context in which the extinction learning took place. Rodent studies implicate the ventromedial prefrontal cortex (vmPFC) and hippocampus in extinction recall and its modulation by context, respectively. The aim of the present study is to investigate the mediating anatomy of extinction recall in healthy humans. METHODS We used event-related functional magnetic resonance imaging (fMRI) and a 2-day fear conditioning and extinction protocol with skin conductance response as the index of conditioned responses. RESULTS During extinction recall, we found significant activations in vmPFC and hippocampus in response to the extinguished versus an unextinguished stimulus. Activation in these brain regions was positively correlated with the magnitude of extinction memory. Functional connectivity analysis revealed significant positive correlation between vmPFC and hippocampal activation during extinction recall. CONCLUSIONS These results support the involvement of the human hippocampus as well as vmPFC in the recall of extinction memory. Furthermore, this provides a paradigm for future investigations of fronto-temporal function during extinction recall in psychiatric disorders such as posttraumatic stress disorder.


Neuron | 1995

Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat.

Gregory J. Quirk; J. Christopher Repa; Joseph E. LeDoux

The lateral nucleus of the amygdala (LA) is the first site in the amygdala where the plasticity underlying fear conditioning could occur. We simultaneously recorded from multiple LA neurons in freely moving rats during fear conditioning trials in which tones were paired with foot shocks. Conditioning significantly increased the magnitude of tone-elicited responses (often within the first several trials), converted unresponsive cells into tone-responsive ones, and altered functional couplings between LA neurons. The effects of conditioning were greatest on the shortest latency (less than 15 ms) components of the tone-elicited responses, consistent with the hypothesis that direct projections from the auditory thalamus to LA are an important link in the circuitry through which rapid behavioral responses are controlled in the presence of conditioned fear stimuli.


Annual Review of Psychology | 2012

Fear Extinction as a Model for Translational Neuroscience: Ten Years of Progress

Mohammed R. Milad; Gregory J. Quirk

The psychology of extinction has been studied for decades. Approximately 10 years ago, however, there began a concerted effort to understand the neural circuits of extinction of fear conditioning, in both animals and humans. Progress during this period has been facilitated by a high degree of coordination between rodent and human researchers examining fear extinction. Here we review the major advances and highlight new approaches to understanding and exploiting fear extinction. Research in fear extinction could serve as a model for translational research in other areas of behavioral neuroscience.


Neuropsychopharmacology | 2011

Dissociable Roles of Prelimbic and Infralimbic Cortices, Ventral Hippocampus, and Basolateral Amygdala in the Expression and Extinction of Conditioned Fear

Demetrio Sierra-Mercado; Nancy Padilla-Coreano; Gregory J. Quirk

Current models of conditioned fear expression and extinction involve the basolateral amygdala (BLA), ventral medial prefrontal cortex (vmPFC), and the hippocampus (HPC). There is some disagreement with respect to the specific roles of these structures, perhaps due to subregional differences within each area. For example, growing evidence suggests that infralimbic (IL) and prelimbic (PL) subregions of vmPFC have opposite influences on fear expression. Moreover, it is the ventral HPC (vHPC), rather than the dorsal HPC, that projects to vmPFC and BLA. To help determine regional specificity, we used small doses of the GABAA agonist muscimol to selectively inactivate IL, PL, BLA, or vHPC in an auditory fear conditioning and extinction paradigm. Infusions were performed prior to extinction training, allowing us to assess the effects on both fear expression and subsequent extinction memory. Inactivation of IL had no effect on fear expression, but impaired the within-session acquisition of extinction as well as extinction memory. In contrast, inactivation of PL impaired fear expression, but had no effect on extinction memory. Inactivation of the BLA or vHPC impaired both fear expression and extinction memory. Post-extinction inactivations had no effect in any structure. We suggest a model in which amygdala-dependent fear expression is modulated by inputs from PL and vHPC, whereas extinction memory requires extinction-induced plasticity in IL, BLA, and/or vHPC.


Biological Psychiatry | 2006

Prefrontal Mechanisms in Extinction of Conditioned Fear

Gregory J. Quirk; René Garcia; Francisco Gonzalez-Lima

Interest in the medial prefrontal cortex (mPFC) as a source of behavioral inhibition has increased with the mounting evidence for a functional role of the mPFC in extinction of conditioned fear. In fear extinction, a tone-conditioned stimulus (CS) previously paired with a footshock is presented repeatedly in the absence of footshock, causing fear responses to diminish. Here, we review converging evidence from different laboratories implicating the mPFC in memory circuits for fear extinction: (1) lesions of mPFC impair recall of extinction under various conditions, (2) extinction potentiates mPFC physiological responses to the CS, (3) mPFC potentiation is correlated with extinction behavior, and (4) stimulation of mPFC strengthens extinction memory. These findings support Pavlovs original notion that extinction is new learning, rather than erasure of conditioning. In people suffering from posttraumatic stress disorder (PTSD), homologous areas of ventral mPFC show morphological and functional abnormalities, suggesting that extinction circuits are compromised in PTSD. Strategies for augmenting prefrontal function for clinical benefit are discussed.


Current Opinion in Neurobiology | 2006

Prefrontal involvement in the regulation of emotion : Convergence of rat and human studies

Gregory J. Quirk; Jennifer S. Beer

Emotion regulation is a process by which we control when and where emotions are expressed. Paradigms used to study the regulation of emotion in humans examine controlled responses to emotional stimuli and/or the inhibition of emotional influences on subsequent behavior. These processes of regulation of emotion trigger activation of the ventromedial prefrontal cortex and inhibition of the amygdala. A similar pattern of activation is seen in rodents during recall of fear extinction, an example of emotional regulation. The overlap in circuitry is consistent with a common mechanism, and points toward future experiments designed to bridge human and rodent models of emotion regulation.


Neuron | 1997

Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala

Gregory J. Quirk; Jorge L. Armony; Joseph E. LeDoux

Single neurons were recorded in freely behaving rats during fear conditioning from areas of auditory cortex that project to the lateral nucleus of the amygdala (LA). The latency and rate of conditioning and extinction were analyzed, and the results were compared to previous recordings from LA itself. Auditory cortex neurons took more trials to learn, and they responded more slowly than LA neurons within trials. Short-latency plasticity in LA, therefore, reflects inputs from the auditory thalamus rather than the auditory cortex. Unlike LA cells, some auditory cortex cells showed late conditioned responses that seemed to anticipate the unconditioned stimulus, while others showed extinction-resistant memory storage. Thus, rapid conditioning of fear responses to potentially dangerous stimuli depends on plasticity in the amygdala, while cortical areas may be particularly involved in higher cognitive (mnemonic and attentional) processing of fear experiences.

Collaboration


Dive into the Gregory J. Quirk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edwin Santini

Nova Southeastern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge