Gregory LaMonte
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregory LaMonte.
Cell Host & Microbe | 2012
Gregory LaMonte; Nisha Philip; Joseph M. Reardon; Joshua R. Lacsina; William H. Majoros; Lesley Chapman; Courtney D. Thornburg; Marilyn J. Telen; Uwe Ohler; Christopher V. Nicchitta; Timothy A. J. Haystead; Jen-Tsan Chi
Erythrocytes carrying a variant hemoglobin allele (HbS), which causes sickle cell disease and resists infection by the malaria parasite Plasmodium falciparum. The molecular basis of this resistance, which has long been recognized as multifactorial, remains incompletely understood. Here we show that the dysregulated microRNA (miRNA) composition, of either heterozygous HbAS or homozygous HbSS erythrocytes, contributes to resistance against P. falciparum. During the intraerythrocytic life cycle of P. falciparum, a subset of erythrocyte miRNAs translocate into the parasite. Two miRNAs, miR-451 and let-7i, were highly enriched in HbAS and HbSS erythrocytes, and these miRNAs, along with miR-223, negatively regulated parasite growth. Surprisingly, we found that miR-451 and let-7i integrated into essential parasite messenger RNAs and, via impaired ribosomal loading, resulted in translational inhibition. Hence, sickle cell erythrocytes exhibit cell-intrinsic resistance to malaria in part through an atypical miRNA activity, which may represent a unique host defense strategy against complex eukaryotic pathogens.
Cancer and Metabolism | 2013
Gregory LaMonte; Xiaohu Tang; Julia Ling-Yu Chen; Jianli Wu; Chien-Kuang Cornelia Ding; Melissa M. Keenan; Carolyn Sangokoya; Hsiu-Ni Kung; Olga R. Ilkayeva; Laszlo G. Boros; Christopher B. Newgard; Jen-Tsan Chi
BackgroundA variety of oncogenic and environmental factors alter tumor metabolism to serve the distinct cellular biosynthetic and bioenergetic needs present during oncogenesis. Extracellular acidosis is a common microenvironmental stress in solid tumors, but little is known about its metabolic influence, particularly when present in the absence of hypoxia. In order to characterize the extent of tumor cell metabolic adaptations to acidosis, we employed stable isotope tracers to examine how acidosis impacts glucose, glutamine, and palmitate metabolism in breast cancer cells exposed to extracellular acidosis.ResultsAcidosis increased both glutaminolysis and fatty acid β-oxidation, which contribute metabolic intermediates to drive the tricarboxylic acid cycle (TCA cycle) and ATP generation. Acidosis also led to a decoupling of glutaminolysis and novel glutathione (GSH) synthesis by repressing GCLC/GCLM expression. We further found that acidosis redirects glucose away from lactate production and towards the oxidative branch of the pentose phosphate pathway (PPP). These changes all serve to increase nicotinamide adenine dinucleotide phosphate (NADPH) production and counter the increase in reactive oxygen species (ROS) present under acidosis. The reduced novel GSH synthesis under acidosis may explain the increased demand for NADPH to recycle existing pools of GSH. Interestingly, acidosis also disconnected novel ribose synthesis from the oxidative PPP, seemingly to reroute PPP metabolites to the TCA cycle. Finally, we found that acidosis activates p53, which contributes to both the enhanced PPP and increased glutaminolysis, at least in part, through the induction of G6PD and GLS2 genes.ConclusionsAcidosis alters the cellular metabolism of several major metabolites, which induces a significant degree of metabolic inflexibility. Cells exposed to acidosis largely rely upon mitochondrial metabolism for energy generation to the extent that metabolic intermediates are redirected away from several other critical metabolic processes, including ribose and glutathione synthesis. These alterations lead to both a decrease in cellular proliferation and increased sensitivity to ROS. Collectively, these data reveal a role for p53 in cellular metabolic reprogramming under acidosis, in order to permit increased bioenergetic capacity and ROS neutralization. Understanding the metabolic adaptations that cancer cells make under acidosis may present opportunities to generate anti-tumor therapeutic agents that are more tumor-specific.
Circulation | 2008
Ayotunde O. Dokun; Sehoon Keum; Surovi Hazarika; Yongjun Li; Gregory LaMonte; Ferrin C. Wheeler; Douglas A. Marchuk; Brian H. Annex
Background— Peripheral arterial disease (PAD) caused by occlusive atherosclerosis of the lower extremity has 2 major clinical manifestations. Critical limb ischemia is characterized by rest pain and/or tissue loss and has a ≥40% risk of death and major amputation. Intermittent claudication causes pain on walking, has no tissue loss, and has amputation plus mortality rates of 2% to 4% per year. Progression from claudication to limb ischemia is infrequent. Risk factors in most PAD patients overlap. Thus, we hypothesized that genetic variations may be linked to presence or absence of tissue loss in PAD. Methods and Results— Hindlimb ischemia (murine model of PAD) was induced in C57BL/6, BALB/c, C57BL/6×BALB/c (F1), F1×BALB/c (N2), A/J, and C57BL/6J-Chr7A/J/NaJ chromosome substitution strains. Mice were monitored for perfusion recovery and tissue necrosis. Genome-wide scanning with polymorphic markers across the 19 murine autosomes was performed on the N2 mice. Greater tissue loss and poorer perfusion recovery occurred in BALB/c than in the C57BL/6 strain. Analysis of 105 N2 progeny identified a single quantitative trait locus on chromosome 7 that exhibited significant linkage to both tissue necrosis and extent of perfusion recovery. Using the appropriate chromosome substitution strain, we demonstrate that C57BL/6-derived chromosome 7 is required for tissue preservation. Conclusions— We have identified a quantitative trait locus on murine chromosome 7 (LSq-1) that is associated with the absence of tissue loss in a preclinical model of PAD and may be useful in identifying gene(s) that influence PAD in humans.
Cancer Research | 2012
Xiaohu Tang; Joseph E. Lucas; Julia Ling-Yu Chen; Gregory LaMonte; Jianli Wu; Michael Changsheng Wang; Constantinos Koumenis; Jen-Tsan Chi
Within solid tumor microenvironments, lactic acidosis, and hypoxia each have powerful effects on cancer pathophysiology. However, the influence that these processes exert on each other is unknown. Here, we report that a significant portion of the transcriptional response to hypoxia elicited in cancer cells is abolished by simultaneous exposure to lactic acidosis. In particular, lactic acidosis abolished stabilization of HIF-1α protein which occurs normally under hypoxic conditions. In contrast, lactic acidosis strongly synergized with hypoxia to activate the unfolded protein response (UPR) and an inflammatory response, displaying a strong similarity to ATF4-driven amino acid deprivation responses (AAR). In certain breast tumors and breast tumor cells examined, an integrative analysis of gene expression and array CGH data revealed DNA copy number alterations at the ATF4 locus, an important activator of the UPR/AAR pathway. In this setting, varying ATF4 levels influenced the survival of cells after exposure to hypoxia and lactic acidosis. Our findings reveal that the condition of lactic acidosis present in solid tumors inhibits canonical hypoxia responses and activates UPR and inflammation responses. Furthermore, these data suggest that ATF4 status may be a critical determinant of the ability of cancer cells to adapt to oxygen and acidity fluctuations in the tumor microenvironment, perhaps linking short-term transcriptional responses to long-term selection for copy number alterations in cancer cells.
Science | 2018
Annie N. Cowell; Eva S. Istvan; Amanda K Lukens; Maria G. Gomez-Lorenzo; Manu Vanaerschot; Tomoyo Sakata-Kato; Erika L. Flannery; Pamela Magistrado; Edward Owen; Matthew Abraham; Gregory LaMonte; Heather J. Painter; Roy Williams; Virginia Franco; Maria Linares; Ignacio Arriaga; Selina Bopp; Victoria C. Corey; Nina F. Gnädig; Olivia Coburn-Flynn; Christin Reimer; Purva Gupta; James M. Murithi; Pedro A. Moura; Olivia Fuchs; Erika Sasaki; Sang W. Kim; Christine H. Teng; Lawrence T. Wang; Aslı Akidil
Dissecting Plasmodium drug resistance Malaria is a deadly disease with no effective vaccine. Physicians thus depend on antimalarial drugs to save lives, but such compounds are often rendered ineffective when parasites evolve resistance. Cowell et al. systematically studied patterns of Plasmodium falciparum genome evolution by analyzing the sequences of clones that were resistant to diverse antimalarial compounds across the P. falciparum life cycle (see the Perspective by Carlton). The findings identify hitherto unrecognized drug targets and drug-resistance genes, as well as additional alleles in known drug-resistance genes. Science, this issue p. 191; see also p. 159 Genome sequencing elucidates potential drug resistance in the malaria parasite and identifies antimalarial targets. Chemogenetic characterization through in vitro evolution combined with whole-genome analysis can identify antimalarial drug targets and drug-resistance genes. We performed a genome analysis of 262 Plasmodium falciparum parasites resistant to 37 diverse compounds. We found 159 gene amplifications and 148 nonsynonymous changes in 83 genes associated with drug-resistance acquisition, where gene amplifications contributed to one-third of resistance acquisition events. Beyond confirming previously identified multidrug-resistance mechanisms, we discovered hitherto unrecognized drug target–inhibitor pairs, including thymidylate synthase and a benzoquinazolinone, farnesyltransferase and a pyrimidinedione, and a dipeptidylpeptidase and an arylurea. This exploration of the P. falciparum resistome and druggable genome will likely guide drug discovery and structural biology efforts, while also advancing our understanding of resistance mechanisms available to the malaria parasite.
Molecular and Biochemical Parasitology | 2011
Joshua R. Lacsina; Gregory LaMonte; Christopher V. Nicchitta; Jen-Tsan Chi
In the malaria parasite Plasmodium falciparum, global studies of translational regulation have been hampered by the inability to isolate malaria polysomes. We describe here a novel method for polysome profiling in P. falciparum, a powerful approach which allows both a global view of translation and the measurement of ribosomal loading and density for specific mRNAs. Simultaneous lysis of infected erythrocytes and parasites releases stable, intact malaria polysomes, which are then purified by centrifugation through a sucrose cushion. The polysomes are resuspended, separated by velocity sedimentation and then fractionated, yielding a characteristic polysome profile reflecting the global level of translational activity in the parasite. RNA isolated from specific fractions can be used to determine the density of ribosomes loaded onto a particular transcript of interest, and is free of host ribosome contamination. Thus, our approach opens translational regulation in malaria to genome-wide analysis.
Methods of Molecular Biology | 2010
Carolyn Sangokoya; Gregory LaMonte; Jen-Tsan Chi
Human mature erythrocytes are terminally differentiated cells that have lost their nuclei and organelles during development. Even though mature erythrocytes lack ribosomal and other large-sized RNAs, they still retain small-sized RNAs. We have recently shown that there are abundant and diverse species of microRNAs in mature erythrocytes through the use of several different techniques, including northern blot, miRNA microarray, and real-time PCR. Furthermore, fractionation and genomic analysis has revealed that erythrocyte microRNA expression is different from that of reticulocytes or leukocytes and that mature erythrocytes contribute the majority of microRNA expression in whole blood. Therefore, global analysis of microRNA expression in circulating erythrocytes has the potential to provide mechanistic insights into erythrocyte biology and erythrocyte-related disorders. Here, we have provided the detailed methods for isolating and characterizing the microRNAs from human mature erythrocytes to enable such researches into human diseases involving erythrocytes.
Scientific Reports | 2016
Gregory M. Goldgof; Jacob D. Durrant; Sabine Ottilie; Edgar Vigil; Kenneth E. Allen; Felicia Gunawan; Maxim Kostylev; Kiersten A. Henderson; Jennifer Yang; Jake Schenken; Gregory LaMonte; Micah J. Manary; Ayako Murao; Marie Nachon; Rebecca Stanhope; Maximo Prescott; Case W. McNamara; Carolyn W. Slayman; Rommie E. Amaro; Yo Suzuki; Elizabeth A. Winzeler
The spiroindolones, a new class of antimalarial medicines discovered in a cellular screen, are rendered less active by mutations in a parasite P-type ATPase, PfATP4. We show here that S. cerevisiae also acquires mutations in a gene encoding a P-type ATPase (ScPMA1) after exposure to spiroindolones and that these mutations are sufficient for resistance. KAE609 resistance mutations in ScPMA1 do not confer resistance to unrelated antimicrobials, but do confer cross sensitivity to the alkyl-lysophospholipid edelfosine, which is known to displace ScPma1p from the plasma membrane. Using an in vitro cell-free assay, we demonstrate that KAE609 directly inhibits ScPma1p ATPase activity. KAE609 also increases cytoplasmic hydrogen ion concentrations in yeast cells. Computer docking into a ScPma1p homology model identifies a binding mode that supports genetic resistance determinants and in vitro experimental structure-activity relationships in both P. falciparum and S. cerevisiae. This model also suggests a shared binding site with the dihydroisoquinolones antimalarials. Our data support a model in which KAE609 exerts its antimalarial activity by directly interfering with P-type ATPase activity.
Mbio | 2016
Gregory LaMonte; Michelle Yi-Xiu Lim; Melanie Wree; Christin Reimer; Marie Nachon; Victoria C. Corey; Peter Gedeck; David Plouffe; Alan Du; Nelissa Figueroa; Bryan K. S. Yeung; Pablo Bifani; Elizabeth A. Winzeler
ABSTRACT Mutations in the Plasmodium falciparum cyclic amine resistance locus (PfCARL) are associated with parasite resistance to the imidazolopiperazines, a potent class of novel antimalarial compounds that display both prophylactic and transmission-blocking activity, in addition to activity against blood-stage parasites. Here, we show that pfcarl encodes a protein, with a predicted molecular weight of 153 kDa, that localizes to the cis-Golgi apparatus of the parasite in both asexual and sexual blood stages. Utilizing clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene introduction of 5 variants (L830V, S1076N/I, V1103L, and I1139K), we demonstrate that mutations in pfcarl are sufficient to generate resistance against the imidazolopiperazines in both asexual and sexual blood-stage parasites. We further determined that the mutant PfCARL protein confers resistance to several structurally unrelated compounds. These data suggest that PfCARL modulates the levels of small-molecule inhibitors that affect Golgi-related processes, such as protein sorting or membrane trafficking, and is therefore an important mechanism of resistance in malaria parasites. IMPORTANCE Several previous in vitro evolution studies have implicated the Plasmodium falciparum cyclic amine resistance locus (PfCARL) as a potential target of imidazolopiperazines, potent antimalarial compounds with broad activity against different parasite life cycle stages. Given that the imidazolopiperazines are currently being tested in clinical trials, understanding their mechanism of resistance and the cellular processes involved will allow more effective clinical usage. Several previous in vitro evolution studies have implicated the Plasmodium falciparum cyclic amine resistance locus (PfCARL) as a potential target of imidazolopiperazines, potent antimalarial compounds with broad activity against different parasite life cycle stages. Given that the imidazolopiperazines are currently being tested in clinical trials, understanding their mechanism of resistance and the cellular processes involved will allow more effective clinical usage.
Journal of Medicinal Chemistry | 2017
Gregory LaMonte; Jehad Almaliti; Betsaida Bibo-Verdugo; Lena Keller; Bing Yu Zou; Jennifer Yang; Yevgeniya Antonova-Koch; Pamela Orjuela-Sanchez; Colleen A. Boyle; Edgar Vigil; Lawrence Wang; Gregory M. Goldgof; Lena Gerwick; Anthony J. O’Donoghue; Elizabeth A. Winzeler; William H. Gerwick; Sabine Ottilie
Naturally derived chemical compounds are the foundation of much of our pharmacopeia, especially in antiproliferative and anti-infective drug classes. Here, we report that a naturally derived molecule called carmaphycin B is a potent inhibitor against both the asexual and sexual blood stages of malaria infection. Using a combination of in silico molecular docking and in vitro directed evolution in a well-characterized drug-sensitive yeast model, we determined that these compounds target the β5 subunit of the proteasome. These studies were validated using in vitro inhibition assays with proteasomes isolated from Plasmodium falciparum. As carmaphycin B is toxic to mammalian cells, we synthesized a series of chemical analogs that reduce host cell toxicity while maintaining blood-stage and gametocytocidal antimalarial activity and proteasome inhibition. This study describes a promising new class of antimalarial compound based on the carmaphycin B scaffold, as well as several chemical structural features that serve to enhance antimalarial specificity.