Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory Laughlin is active.

Publication


Featured researches published by Gregory Laughlin.


The Astrophysical Journal | 2004

Photoevaporation of Circumstellar Disks Due to External Far-Ultraviolet Radiation in Stellar Aggregates

Fred C. Adams; David J. Hollenbach; Gregory Laughlin; Uma Gorti

When stars form within small groups (with N* ? 100-500 members), their circumstellar disks are exposed to relatively little extreme-ultraviolet (EUV; h? > 13.6 eV) radiation but a great deal of far-ultraviolet (FUV; 6 eV rg and is negligible for rd < rg. Since rg 100 AU for FUV heating, this would imply little mass loss from the planet-forming regions of a disk. In this paper we focus on systems in which photoevaporation is suppressed because rd < rg and show that significant mass loss still takes place as long as rd/rg 0.1-0.2. Some of the gas extends beyond the disk edge (or above the disk surface) to larger distances where the temperature is higher, the escape speed is lower, and an outflow develops. The resulting evaporation rate is a sensitive function of the central stellar mass and disk radius, which determine the escape speed, and the external FUV flux, which determines the temperature structure of the surface layers and outflowing gas. Disks around red dwarfs, low-mass stars with M* 0.5 M?, are evaporated and shrink to disk radii rd 15 AU on short timescales t 10 Myr when exposed to moderate FUV fields with G0 = 3000 (where G0 = 1.7 for the local interstellar FUV field). The disks around solar-type stars are more durable. For intense FUV radiation fields with G0 = 30,000, however, even these disks shrink to rd 15 AU on timescales t ~ 10 Myr. Such fields exist within about 0.7 pc of the center of a cluster with N* ? 4000 stars. If our solar system formed in the presence of such strong FUV radiation fields, this mechanism could explain why Neptune and Uranus in our solar system are gas-poor, whereas Jupiter and Saturn are relatively gas-rich. This mechanism for photoevaporation can also limit the production of Kuiper Belt objects and can suppress giant planet formation in sufficiently large clusters, such as the Hyades, especially for disks associated with low-mass stars.


Monthly Notices of the Royal Astronomical Society | 2013

The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths

Eugene Chiang; Gregory Laughlin

Close-in super-Earths, with radii R = 2-5 R_Earth and orbital periods P < 100 days, orbit more than half, and perhaps nearly all Sun-like stars in the universe. We use this omnipresent population to construct the minimum-mass extrasolar nebula (MMEN), the circumstellar disk of solar-composition solids and gas from which such planets formed, if they formed near their current locations and did not migrate. In a series of back-of-the-envelope calculations, we demonstrate how in-situ formation in the MMEN is fast, efficient, and can reproduce many of the observed properties of close-in super-Earths, including their gas-to-rock fractions. Testable predictions are discussed.


Proceedings of SPIE | 2014

Transiting Exoplanet Survey Satellite (TESS)

George R. Ricker; Joshua N. Winn; R. Vanderspek; David W. Latham; G. Á. Bakos; Jacob L. Bean; Zachory K. Berta-Thompson; Timothy M. Brown; Lars A. Buchhave; Nathaniel R. Butler; R. Paul Butler; W. J. Chaplin; David Charbonneau; Jørgen Christensen-Dalsgaard; Mark Clampin; Drake Deming; John P. Doty; Nathan De Lee; Courtney D. Dressing; Edward W. Dunham; Michael Endl; Francois Fressin; Jian Ge; Thomas Henning; Matthew J. Holman; Andrew W. Howard; Shigeru Ida; Jon M. Jenkins; Garrett Jernigan; John Asher Johnson

The Transiting Exoplanet Survey Satellite (TESS ) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its two-year mission, TESS will employ four wide-field optical CCD cameras to monitor at least 200,000 main-sequence dwarf stars with IC (approximately less than) 13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from one month to one year, depending mainly on the stars ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10-100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every four months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.


The Astrophysical Journal | 2003

On the Radii of Extrasolar Giant Planets

Peter Bodenheimer; Gregory Laughlin; Douglas N. C. Lin

We have computed evolutionary models for extrasolar planets that range in mass from 0.1MJ to 3.0MJ and that range in equilibrium temperature from 113 to 2000 K. We present four sequences of models, designed to show the structural effects of a solid (20 M⊕) core and of internal heating due to the conversion of kinetic to thermal energy at pressures of tens of bars. The model radii at ages of 4-5 Gyr are intended for future comparisons with radii derived from observations of transiting extrasolar planets. To provide such comparisons, we expect that of order 10 transiting planets with orbital periods less than 200 days can be detected around bright (V < 10-11) main-sequence stars, for which accurate well-sampled radial velocity (RV) measurements can also be readily accumulated. Through these observations, structural properties of the planets will be derivable, particularly for low-mass, high-temperature planets. Implications regarding the transiting companion to OGLE-TR-56 recently announced by Konacki et al. are discussed. With regard to the transiting planet HD 209458b, we find, in accordance with other recent calculations, that models without internal heating predict a radius that is ~0.3RJ smaller than the observed radius. Two resolutions have been proposed for this discrepancy. Guillot & Showman hypothesize that deposition of kinetic wind energy at pressures of tens of bars is responsible for heating the planet and maintaining its large size. Our models confirm that dissipation of the type proposed by Guillot & Showman can indeed produce a large radius for HD 209458b. Bodenheimer, Lin, & Mardling suggest that HD 209458b owes its large size to dissipation of energy arising from ongoing tidal circularization of the planetary orbit. This mechanism requires the presence of an additional planetary companion to continuously force the eccentricity. We show that residual scatter in the current RV data set for HD 209458b is consistent with the presence of an as-of-yet undetected second companion and that further RV monitoring of HD 209458 is indicated. Tidal circularization theory also can provide constraints on planetary radii. Extrasolar giant planets with periods of order 7 days should be actively circularizing. We find that the observed eccentricities of e ~ 0.14 for both HD 217107b (P = 6.276 days; M sin i = 1.80MJ) and HD 68988b (P = 7.125 days, M sin i = 1.29MJ) likely indicate either relatively small planetary radii for these objects (R ~ 1.1RJ) or tidal quality factors in the neighborhood of QP ~ 107. For these two planets, it will be difficult to differentiate the contribution from tidal and kinetic heating. But the radius of HD 168746b (P = 6.403 days, M sin i = 0.23MJ) is sensitive to whether the planets interior is heated by tidal dissipation or kinetic heating. The tidal circularization timescale of this planet is shorter than the age of its host star, but we show that within the observational uncertainties, the published RV data can also be fitted with a circular orbit for this planet. As more RV planets with periods of order 1 week are discovered, QP(Teq,MP) and RP(Teq,MP) will become better determined.


The Astrophysical Journal | 2004

The Core Accretion Model Predicts Few Jovian-Mass Planets Orbiting Red Dwarfs

Gregory Laughlin; Peter Bodenheimer; Fred C. Adams

The favored theoretical explanation for giant planet formation—in both our solar system and others—is the core accretion model (although it still has some serious difficulties). In this scenario, planetesimals accumulate to build up planetary cores, which then accrete nebular gas. With current opacity estimates for protoplanetary envelopes, this model predicts the formation of Jupiter-mass planets in 2-3 Myr at 5 AU around solar-mass stars, provided that the surface density of solids is enhanced over that of the minimum-mass solar nebula (by a factor of a few). Working within the core accretion paradigm, this Letter presents theoretical calculations that show that the formation of Jupiter-mass planets orbiting M dwarf stars is seriously inhibited at all radial locations (in sharp contrast to solar-type stars). Planet detection programs sensitive to companions of M dwarfs will test this prediction in the near future.


Journal of Astronomical Telescopes, Instruments, and Systems | 2014

Transiting Exoplanet Survey Satellite

George R. Ricker; Joshua N. Winn; R. Vanderspek; David W. Latham; G. Á. Bakos; Jacob L. Bean; Zachory K. Berta-Thompson; Timothy M. Brown; Lars A. Buchhave; Nathaniel R. Butler; R. Paul Butler; W. J. Chaplin; David Charbonneau; Jørgen Christensen-Dalsgaard; Mark Clampin; Drake Deming; John P. Doty; Nathan De Lee; Courtney D. Dressing; Edward W. Dunham; Michael Endl; Francois Fressin; Jian Ge; Thomas Henning; Matthew J. Holman; Andrew W. Howard; Shigeru Ida; Jon M. Jenkins; Garrett Jernigan; John Asher Johnson

Abstract. The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its 2-year mission, TESS will employ four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars with IC≈4−13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from 1 month to 1 year, depending mainly on the star’s ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10 to 100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every 4 months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.


The Astrophysical Journal | 1994

Nonaxisymmetric evolution in protostellar disks

Gregory Laughlin; Peter Bodenheimer

We present a two-dimensional, multigridded hydrodynamical simulation of the collapse of an axisymmetric, rotating, 1 solar mass protostellar cloud, which forms a resolved, hydrotastic disk. The code includes the effects of physical viscosity, radiative transfer and radiative acceleration but not magnetic fields. We examine how the disk is affected by the inclusion of turbulent viscosity by comparing a viscous simulation with an inviscid model evolved from the same initial conditions, and we derive a disk evolutionary timescale on the order of 300,000 years if alpha = 0.01. Effects arising from non-axisymmetric gravitational instabilities in the protostellar disk are followed with a three-dimensional SPH code, starting from the two-dimensional structure. We find that the disk is prone to a series of spiral instabilities with primary azimulthal mode number m = 1 and m = 2. The torques induced by these nonaxisymmetric structures elicit material transport of angular momentum and mass through the disk, readjusting the surface density profile toward more stable configurations. We present a series of analyses which characterize both the development and the likely source of the instabilities. We speculate that an evolving disk which maintains a minimum Toomre Q-value approximately 1.4 will have a total evolutionary span of several times 10(exp 5) years, comparable to, but somewhat shorter than the evolutionary timescale resulting from viscous turbulence alone. We compare the evolution resulting from nonaxisymmetric instabilities with solutions of a one-dimensional viscous diffusion equation applied to the initial surface density and temperature profile. We find that an effective alpha-value of 0.03 is a good fit to the results of the simulation. However, the effective alpha will depend on the minimum Q in the disk at the time the instability is activated. We argue that the major fraction of the transport characterized by the value of alpha is due to the action of gravitational torques, and does not arise from inherent viscosity within the smoothed particle hydrodynamics method.


The Astrophysical Journal | 2012

3.6 AND 4.5 μm PHASE CURVES AND EVIDENCE FOR NON-EQUILIBRIUM CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HD 189733b

Heather A. Knutson; Nikole K. Lewis; Jonathan J. Fortney; Adam Burrows; Nicolas B. Cowan; Eric Agol; S. Aigrain; David Charbonneau; Drake Deming; J.-M. Desert; Gregory W. Henry; Jonathan Langton; Gregory Laughlin

We present new, full-orbit observations of the infrared phase variations of the canonical hot Jupiter HD 189733b obtained in the 3.6 and 4.5 μm bands using the Spitzer Space Telescope. When combined with previous phase curve observations at 8.0 and 24 μm, these data allow us to characterize the exoplanets emission spectrum as a function of planetary longitude and to search for local variations in its vertical thermal profile and atmospheric composition. We utilize an improved method for removing the effects of intrapixel sensitivity variations and robustly extracting phase curve signals from these data, and we calculate our best-fit parameters and uncertainties using a wavelet-based Markov Chain Monte Carlo analysis that accounts for the presence of time-correlated noise in our data. We measure a phase curve amplitude of 0.1242% ± 0.0061% in the 3.6 μm band and 0.0982% ± 0.0089% in the 4.5 μm band, corresponding to brightness temperature contrasts of 503 ± 21 K and 264 ± 24 K, respectively. We find that the times of minimum and maximum flux occur several hours earlier than predicted for an atmosphere in radiative equilibrium, consistent with the eastward advection of gas by an equatorial super-rotating jet. The locations of the flux minima in our new data differ from our previous observations at 8 μm, and we present new evidence indicating that the flux minimum observed in the 8 μm is likely caused by an overshooting effect in the 8 μm array. We obtain improved estimates for HD 189733bs dayside planet-star flux ratio of 0.1466% ± 0.0040% in the 3.6 μm band and 0.1787% ± 0.0038% in the 4.5 μm band, corresponding to brightness temperatures of 1328 ± 11 K and 1192 ± 9 K, respectively; these are the most accurate secondary eclipse depths obtained to date for an extrasolar planet. We compare our new dayside and nightside spectra for HD 189733b to the predictions of one-dimensional radiative transfer models from Burrows et al. and conclude that fits to this planets dayside spectrum provide a reasonably accurate estimate of the amount of energy transported to the night side. Our 3.6 and 4.5 μm phase curves are generally in good agreement with the predictions of general circulation models for this planet from Showman et al., although we require either excess drag or slower rotation rates in order to match the locations of the measured maxima and minima in the 4.5, 8.0, and 24 μm bands. We find that HD 189733bs 4.5 μm nightside flux is 3.3σ smaller than predicted by these models, which assume that the chemistry is in local thermal equilibrium. We conclude that this discrepancy is best explained by vertical mixing, which should lead to an excess of CO and correspondingly enhanced 4.5 μm absorption in this region. This result is consistent with our constraints on the planets transmission spectrum, which also suggest excess absorption in the 4.5 μm band at the day-night terminator.


Publications of the Astronomical Society of the Pacific | 2009

Discovery and Characterization of Transiting Super Earths Using an All-Sky Transit Survey and Follow-up by the James Webb Space Telescope

Drake Deming; Sara Seager; Joshua N. Winn; E. Miller-Ricci; Mark Clampin; Don J. Lindler; Thomas P. Greene; David Charbonneau; Gregory Laughlin; George R. Ricker; David W. Latham; K. Ennico

Doppler and transit surveys are finding extrasolar planets of ever smaller mass and radius, and are now sampling the domain of super Earths (1-3R⊕). Recent results from the Doppler surveys suggest that discovery of a transiting super Earth in the habitable zone of a lower main sequence star may be possible. We evaluate the prospects for an all-sky transit survey targeted to the brightest stars, that would find the most favorable cases for photometric and spectroscopic characterization using the James Webb Space Telescope (JWST). We use the pro- posed Transiting Exoplanet Survey Satellite (TESS) as representative of an all-sky survey. We couple the simulated TESS yield to a sensitivity model for the MIRI and NIRSpec instruments on JWST. Our sensitivity model includes all currently known and anticipated sources of random and systematic error for these instruments. We focus on the TESS planets with radii between those of Earth and Neptune. Our simulations consider secondary eclipse filter photometry using JWST/MIRI, comparing the 11 and 15 μm bands to measure CO2 absorption in super Earths, as well as JWST/NIRSpec spectroscopy of water absorption from 1.7-3.0 μm, and CO2 absorption at 4.3 μm. We find that JWSTwill be capable of characterizing dozens of TESS super Earths with temperatures above the habitable range, using both MIRI and NIRspec. We project that TESS will discover about eight nearby habitable transiting super Earths, all orbiting lower-main-sequence stars. The principal sources of uncertainty in the prospective JWST characterization of habitable super Earths are super-Earth frequency and the nature of super-Earth atmospheres. Based on our estimates of these uncertainties, we project that JWST will be able to measure the temperature and identify molecular absorptions (water, CO2) in one to four nearby habitable TESS super Earths orbiting lower-main-sequence stars.


The Astrophysical Journal | 2006

The N2K Consortium. IV. New Temperatures and Metallicities for More than 100,000 FGK Dwarfs

S. Mark Ammons; Sarah E. Robinson; Jay Strader; Gregory Laughlin; Debra A. Fischer; Aaron S. Wolf

We have created specialized target lists for radial velocity surveys that are biased toward stars that (1) possess planets and (2) are easiest to observe with current detection techniques. We use a procedure that uniformly estimates fundamental stellar properties of Tycho 2 stars, with errors, using spline functions of broadband photometry and proper motion found in Hipparcos/Tycho 2 and 2MASS. We provide estimates of Teff and distance for 2.4 × 106 Tycho 2 stars that lack trigonometric distances. For stars that appear to be FGK dwarfs, we also derive [Fe/H] and identify unresolved binary systems with mass ratios 1.25 < M1/M2 < 3.0. For FGK dwarfs with photometric error σV < 0.05, or V < 9, our temperature model gives a 1 σ error of σT = +58.7/ - 65.9 K and our metallicity model gives a 1 σ error of σ[Fe/H] = +0.13/ - 0.14 dex. The binarity model can be used to remove 70% of doubles with 1.25 < M1/M2 < 3.0 from a magnitude-limited sample of dwarfs at a cost of cutting 20% of the sample. Our estimates of distance and spectral type enable us to isolate 354,822 Tycho 2 dwarfs, 321,996 absent from Hipparcos, with giant contamination of 2.6% and 7.2%, respectively. Roughly 100,000 of these stars, not in Hipparcos, have sufficiently low photometric errors to retain 0.13-0.3 dex [Fe/H] accuracy and 80-100 K temperature accuracy (1 σ). Our metallicity estimates have been used to identify targets for N2K, a large-scale radial velocity search for hot jupiters, which has verified the errors presented here. The catalogs that we publish can be used to further large-scale studies of Galactic structure and chemical evolution and to provide potential reference stars for narrow-angle astrometry programs such as the Space Interferometry Mission and large-aperture optical interferometry.

Collaboration


Dive into the Gregory Laughlin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Paul Butler

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven S. Vogt

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory W. Henry

Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Nikole K. Lewis

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Agol

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Heather A. Knutson

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge