Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory Meyer is active.

Publication


Featured researches published by Gregory Meyer.


American Journal of Respiratory and Critical Care Medicine | 2010

Carbon Monoxide Pollution Promotes Cardiac Remodeling and Ventricular Arrhythmia in Healthy Rats

Lucas Andre; Julien Boissiere; Cyril Reboul; Romain Perrier; Santiago Zalvidea; Gregory Meyer; Jérôme Thireau; Stéphane Tanguy; Patrice Bideaux; Maurice Hayot; François Boucher; Philippe Obert; Olivier Cazorla; Sylvain Richard

RATIONALE Epidemiologic studies associate atmospheric carbon monoxide (CO) pollution with adverse cardiovascular outcomes and increased cardiac mortality risk. However, there is a lack of data regarding cellular mechanisms in healthy individuals. OBJECTIVES To investigate the chronic effects of environmentally relevant CO levels on cardiac function in a well-standardized healthy animal model. METHODS Wistar rats were exposed for 4 weeks to filtered air (CO < 1 ppm) or air enriched with CO (30 ppm with five peaks of 100 ppm per 24-h period), consistent with urban pollution. Myocardial function was assessed by echocardiography and analysis of surface ECG and in vitro by measuring the excitation-contraction coupling of single left ventricular cardiomyocytes. MEASUREMENTS AND MAIN RESULTS Chronic CO pollution promoted left ventricular interstitial and perivascular fibrosis, with no change in cardiomyocyte size, and had weak, yet significant, effects on in vivo cardiac function. However, both contraction and relaxation of single cardiomyocytes were markedly altered. Several changes occurred, including decreased Ca(2+) transient amplitude and Ca(2+) sensitivity of myofilaments and increased diastolic intracellular Ca(2+) subsequent to decreased SERCA-2a expression and impaired Ca(2+) reuptake. CO pollution increased the number of arrhythmic events. Hyperphosphorylation of Ca(2+)-handling and sarcomeric proteins, and reduced responses to beta-adrenergic challenge were obtained, suggestive of moderate CO-induced hyperadrenergic state. CONCLUSIONS Chronic CO exposure promotes a pathological phenotype of cardiomyocytes in the absence of underlying cardiomyopathy. The less severe phenotype in vivo suggests a role for compensatory mechanisms. Arrhythmia propensity may derive from intracellular Ca(2+) overload.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Simulated urban carbon monoxide air pollution exacerbates rat heart ischemia-reperfusion injury

Gregory Meyer; Lucas Andre; Stéphane Tanguy; Julien Boissiere; C. Farah; Félicie Lopez-Lauri; Sandrine Gayrard; Sylvain Richard; François Boucher; Olivier Cazorla; Philippe Obert; Cyril Reboul

Myocardial damages due to ischemia-reperfusion (I/R) are recognized to be the result of a complex interplay between genetic and environmental factors. Epidemiological studies suggested that, among environmental factors, carbon monoxide (CO) urban pollution can be linked to cardiac diseases and mortality. The aim of this work was to evaluate the impact of exposure to CO pollution on cardiac sensitivity to I/R. Regional myocardial I/R was performed on isolated perfused hearts from rats exposed for 4 wk to air enriched with CO (30-100 ppm). Functional variables, reperfusion ventricular arrhythmias (VA) and cellular damages (infarct size, lactate dehydrogenase release) were assessed. Sarcomere length shortening and Ca(2+) handling were evaluated in intact isolated cardiomyocytes during a cellular anoxia-reoxygenation protocol. The major results show that prolonged CO exposure worsens myocardial I/R injuries, resulting in increased severity of postischemic VA, impaired recovery of myocardial function, and increased infarct size (60 +/- 5 vs. 33 +/- 2% of ischemic zone). The aggravating effects of CO exposure on I/R could be explained by a reduced myocardial enzymatic antioxidant status (superoxide dismutase -45%; glutathione peroxidase -49%) associated with impaired intracellular Ca(2+) handling. In conclusion, our results are consistent with the idea that chronic CO pollution dramatically increases the severity of myocardial I/R injuries.


Current Pharmaceutical Design | 2013

The Cellular Autophagy Markers Beclin-1 and LC3B-II are Increased During Reperfusion in Fibrillated Mouse Hearts

Gregory Meyer; Attila Czompa; Cyril Reboul; Evelin Csepanyi; Andras Czegledi; Istvan Bak; György Balla; József Balla; Arpad Tosaki; Istvan Lekli

Autophagy is an intracellular bulk degradation process for elimination of damaged macromolecules and organelles. In the past decades, the scientific community has gained increasingly detailed understanding of the role of autophagy in myocardial homeostasis, although still many controversies remain. In the ischemic myocardium, autophagy appears to be beneficial for survival, whereas upon reperfusion the process may induce cell death. However, the overall effect of autophagy seems to depend on the duration and intensity of stress, as along with the extent of autophagy within myocardial tissue. Reperfusion of an ischemic heart maybe harmful, but it is an essential process for myocardial survival. One of the major adverse consequences of reperfusion is the occurrence of ventricular fibrillation (VF). In the present study, we investigated the possible connection between autophagy and VF. Isolated mouse hearts were subjected to ischemia/reperfusion (I/R) and divided into two groups based on the development of VF at the beginning of reperfusion. Western blot analysis was conducted for autophagy-associated proteins LC3B, ATG-5, ATG-7, ATG-12, Bcl-2 and Beclin-1 proteins. Significantly higher level of Beclin-1 and LC3B-II/LC3B-I ratio (both definitive autophagy biomarkers) was observed in the fibrillated myocardium, versus tissue from the nonfibrillated hearts. Interestingly, although Bcl-2 is a major regulator of Beclin-1, level of this protein was not significantly altered in tissue from fibrillated, versus non-fibrillated hearts. Moreover, Atg7 expression showed a trend, albeit nonsignificant, towards elevation in fibrillated versus non-fibrillated hearts. Results of the present investigation demonstrate a possible link between VF and autophagy. Studies by authors of this report to evaluate potential etiologic relationships between the two processes are ongoing.


Scientific Reports | 2017

Carbon monoxide pollution aggravates ischemic heart failure through oxidative stress pathway

Cyril Reboul; Julien Boissiere; Lucas Andre; Gregory Meyer; Patrice Bideaux; Gilles Fouret; Christine Feillet-Coudray; Philippe Obert; Alain Lacampagne; Jérôme Thireau; Olivier Cazorla; Sylvain Richard

Risk of hospital readmission and cardiac mortality increases with atmospheric pollution for patients with heart failure. The underlying mechanisms are unclear. Carbon monoxide (CO) a ubiquitous environmental pollutant could be involved. We explored the effect of daily exposure of CO relevant to urban pollution on post-myocardial infarcted animals. Rats with ischemic heart failure were exposed 4 weeks to daily peaks of CO mimicking urban exposure or to standard filtered air. CO exposure worsened cardiac contractile dysfunction evaluated by echocardiography and at the cardiomyocyte level. In line with clinical reports, the animals exposed to CO also exhibited a severe arrhythmogenic phenotype with numerous sustained ventricular tachycardias as monitored by surface telemetric electrocardiograms. CO did not affect cardiac β–adrenergic responsiveness. Instead, mitochondrial dysfunction was exacerbated leading to additional oxidative stress and Ca2+ cycling alterations. This was reversed following acute antioxidant treatment of cardiomyocytes with N-acetylcysteine confirming involvement of CO-induced oxidative stress. Exposure to daily peaks of CO pollution aggravated cardiac dysfunction in rats with ischemic heart failure by specifically targeting mitochondria and generating ROS-dependent alterations. This pathway may contribute to the high sensibility and vulnerability of individuals with cardiac disease to environmental outdoor air quality.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Moderate exercise prevents impaired Ca2+ handling in heart of CO-exposed rat: implication for sensitivity to ischemia-reperfusion

C. Farah; Gregory Meyer; L. André; Julien Boissiere; Sandrine Gayrard; Olivier Cazorla; Sylvain Richard; François Boucher; Stéphane Tanguy; Philippe Obert; Cyril Reboul

Sustained urban carbon monoxide (CO) exposure exacerbates heart vulnerability to ischemia-reperfusion via deleterious effects on the antioxidant status and Ca(2+) homeostasis of cardiomyocytes. The aim of this work was to evaluate whether moderate exercise training prevents these effects. Wistar rats were randomly assigned to a control group and to CO groups, living during 4 wk in simulated urban CO pollution (30-100 parts/million, 12 h/day) with (CO-Ex) or sedentary without exercise (CO-Sed). The exercise procedure began 4 wk before CO exposure and was maintained twice a week in standard filtered air during CO exposure. On one set of rats, myocardial ischemia (30 min) and reperfusion (120 min) were performed on isolated perfused rat hearts. On another set of rats, myocardial antioxidant status and Ca(2+) handling were evaluated following environmental exposure. As a result, exercise training prevented CO-induced myocardial phenotypical changes. Indeed, exercise induced myocardial antioxidant status recovery in CO-exposed rats, which is accompanied by a normalization of sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a expression and then of Ca(2+) handling. Importantly, in CO-exposed rats, the normalization of cardiomyocyte phenotype with moderate exercise was associated with a restored sensitivity of the myocardium to ischemia-reperfusion. Indeed, CO-Ex rats presented a lower infarct size and a significant decrease of reperfusion arrhythmias compared with their sedentary counterparts. To conclude, moderate exercise, by preventing CO-induced Ca(2+) handling and myocardial antioxidant status alterations, reduces heart vulnerability to ischemia-reperfusion.


Hypertension Research | 2016

Endothelial function does not improve with high-intensity continuous exercise training in SHR: implications of eNOS uncoupling.

Sylvain Battault; François Singh; Sandrine Gayrard; Joffrey Zoll; Cyril Reboul; Gregory Meyer

Exercise training is a well-recognized way to improve vascular endothelial function by increasing nitric oxide (NO) bioavailability. However, in hypertensive subjects, unlike low- and moderate-intensity exercise training, the beneficial effects of continuous high-intensity exercise on endothelial function are not clear, and the underlying mechanisms remain unknown. The aim of this study was to investigate the impact of high-intensity exercise on vascular function, especially on the NO pathway, in spontaneous hypertensive rats (SHR). These effects were studied on WKY, sedentary SHR and SHR that exercised at moderate (SHR-MOD) and high intensity (SHR-HI) on a treadmill (1 h per day; 5 days per week for 6 weeks at 55% and 80% of their maximal aerobic velocity, respectively). Endothelial function and specific NO contributions to acetylcholine-mediated relaxation were evaluated by measuring the aortic ring isometric forces. Endothelial nitric oxide synthase (eNOS) expression and phosphorylation (ser1177) were evaluated by western blotting. The total aortic and eNOS-dependent reactive oxygen species (ROS) production was assessed using electron paramagnetic resonance in aortic tissue. Although the aortas of SHR-HI had increased eNOS levels without alteration of eNOS phosphorylation, high-intensity exercise had no beneficial effect on endothelium-dependent vasorelaxation, unlike moderate exercise. This result was associated with increased eNOS-dependent ROS production in the aortas of SHR-HI. Notably, the use of the recoupling agent BH4 or a thiol-reducing agent blunted eNOS-dependent ROS production in the aortas of SHR-HI. In conclusion, the lack of a positive effect of high-intensity exercise on endothelial function in SHR was mainly explained by redox-dependent eNOS uncoupling, resulting in a switch from NO to O2− generation.


Journal of Nutritional Biochemistry | 2017

Antioxidant properties of tea blunt ROS-dependent lipogenesis: beneficial effect on hepatic steatosis in a high fat-high sucrose diet NAFLD obese rat model.

Laura Braud; Sylvain Battault; Gregory Meyer; Alessandro Nascimento; Sandrine Gaillard; Georges de Sousa; Roger Rahmani; Catherine Riva; Martine Armand; Jean-Michel Maixent; Cyril Reboul

Oxidative stress could trigger lipid accumulation in liver and thus hepatic steatosis. Tea is able to prevent liver disorders, but a direct link between antioxidant capacities and prevention of steatosis has not been reported yet. We aimed to investigate such relationship in a rat model of high fat-high sucrose diet (HFS)-induced obesity and to explore more deeply the mechanisms in isolated hepatocytes. Wistar rats were divided into a control group (standard diet), an HFS group (high fat-sucrose diet) and an HFS+tea group (HFS diet with ad-libitum access to tea drink). Body weight, fat mass, glycemic parameters in blood, lipid and oxidative stress parameters in blood and liver were measured in each group after 14 weeks. Isolated hepatocytes were treated with the reactive oxygen species (ROS) inducer t-BHP in the presence or not of antioxidants (tempol or tea), and superoxide anion production and lipid accumulation were measured using specific fluorescent probes. We reported that the HFS diet highly increased hepatic lipids content, while tea consumption attenuated steatosis and improved the oxidative status (decrease in hepatic oxidative stress, increase in plasma total antioxidant capacity). The role of antioxidant properties of tea in such phenomenon was confirmed in primary cultured rat hepatocytes. Indeed, the increase of mitochondrial ROS production with t-BHP resulted in lipid accumulation in hepatocytes (positive linear regression), and antioxidants (tempol or tea) normalized both. We reported that the antioxidant properties of tea protect rats from an obesogenic HFS diet-induced hepatic steatosis by counteracting the ROS-dependent lipogenesis.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Carbon monoxide increases inducible NOS expression that mediates CO-induced myocardial damage during ischemia-reperfusion

Gregory Meyer; L. André; Adrien Kleindienst; François Singh; Stéphane Tanguy; Sylvain Richard; Philippe Obert; François Boucher; Bernard Jover; Olivier Cazorla; Cyril Reboul

We investigated the role of inducible nitric oxide (NO) synthase (iNOS) on ischemic myocardial damage in rats exposed to daily low nontoxic levels of carbon monoxide (CO). CO is a ubiquitous environmental pollutant that impacts on mortality and morbidity from cardiovascular diseases. We have previously shown that CO exposure aggravates myocardial ischemia-reperfusion (I/R) injury partly because of increased oxidative stress. Nevertheless, cellular mechanisms underlying cardiac CO toxicity remain hypothetical. Wistar rats were exposed to simulated urban CO pollution for 4 wk. First, the effects of CO exposure on NO production and NO synthase (NOS) expression were evaluated. Myocardial I/R was performed on isolated perfused hearts in the presence or absence of S-methyl-isothiourea (1 μM), a NOS inhibitor highly specific for iNOS. Finally, Ca(2+) handling was evaluated in isolated myocytes before and after an anoxia-reoxygenation performed with or without S-methyl-isothiourea or N-acetylcystein (20 μM), a nonspecific antioxidant. Our main results revealed that 1) CO exposure altered the pattern of NOS expression, which is characterized by increased neuronal NOS and iNOS expression; 2) cardiac NO production increased in CO rats because of its overexpression of iNOS; and 3) the use of a specific inhibitor of iNOS reduced myocardial hypersensitivity to I/R (infarct size, 29 vs. 51% of risk zone) in CO rat hearts. These last results are explained by the deleterious effects of NO and reactive oxygen species overproduction by iNOS on diastolic Ca(2+) overload and myofilaments Ca(2+) sensitivity. In conclusion, this study highlights the involvement of iNOS overexpression in the pathogenesis of simulated urban CO air pollution exposure.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2017

Effects of Sugar-Sweetened Beverage Consumption on Microvascular and Macrovascular Function in a Healthy Population

Jordan Loader; Cindy Meziat; Rani Watts; Christian Lorenzen; Dominique Sigaudo-Roussel; Simon Stewart; Cyril Reboul; Gregory Meyer; Guillaume Walther

Objective— To assess vascular function during acute hyperglycemia induced by commercial sugar-sweetened beverage (SSB) consumption and its effect on underlying mechanisms of the nitric oxide pathway. Approach and Results— In a randomized, single-blind, crossover trial, 12 healthy male participants consumed 600 mL (20 oz.) of water or a commercial SSB across 2 visits. Endothelial and vascular smooth muscle functions were assessed in the microcirculation using laser speckle contrast imaging coupled with iontophoresis and in the macrocirculation using brachial artery ultrasound with flow- and nitrate-mediated dilation. Compared with water, SSB consumption impaired microvascular and macrovascular endothelial function as indicated by a decrease in the vascular response to acetylcholine iontophoresis (208.3±24.3 versus 144.2±15.7%, P<0.01) and reduced flow-mediated dilation (0.019±0.002 versus 0.014±0.002%/s, P<0.01), respectively. Systemic vascular smooth muscle remained preserved. Similar decreases in endothelial function were observed during acute hyperglycemia in an in vivo rat model. However, function was fully restored by treatment with the antioxidants, N-acetylcysteine and apocynin. In addition, ex vivo experiments revealed that although the production of reactive oxygen species was increased during acute hyperglycemia, the bioavailability of nitric oxide in the endothelium was decreased, despite no change in the activation state of endothelial nitric oxide synthase. Conclusions— To our knowledge, this is the first study to assess the vascular effects of acute hyperglycemia induced by commercial SSB consumption alone. These findings suggest that SSB-mediated endothelial dysfunction is partly due to increased oxidative stress that decreases nitric oxide bioavailability. Clinical Trial Registration— URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=366442&isReview=true. Australian New Zealand Clinical Trials Registry Number: ACTRN12614000614695.


Journal of Applied Physiology | 2016

Endurance training prevents negative effects of the hypoxia mimetic dimethyloxalylglycine on cardiac and skeletal muscle function

François B. Favier; Florian A. Britto; Benjamin Ponçon; Gwenaelle Begue; Béatrice Chabi; Cyril Reboul; Gregory Meyer; Guillaume Py

Hypoxic preconditioning is a promising strategy to prevent hypoxia-induced damages to several tissues. This effect is related to prior stabilization of the hypoxia-inducible factor-1α via inhibition of the prolyl-hydroxylases (PHDs), which are responsible for its degradation under normoxia. Although PHD inhibition has been shown to increase endurance performance in rodents, potential side effects of such a therapy have not been explored. Here, we investigated the effects of 1 wk of dimethyloxalylglycine (DMOG) treatment (150 mg/kg) on exercise capacity, as well as on cardiac and skeletal muscle function in sedentary and endurance-trained rats. DMOG improved maximal aerobic velocity and endurance in both sedentary and trained rats. This effect was associated with an increase in red blood cells without significant alteration of skeletal muscle contractile properties. In sedentary rats, DMOG treatment resulted in enhanced left ventricle (LV) weight together with impairment in diastolic function, LV relaxation, and pulse pressure. Moreover, DMOG decreased maximal oxygen uptake (state 3) of isolated mitochondria from skeletal muscle. Importantly, endurance training reversed the negative effects of DMOG treatment on cardiac function and restored maximal mitochondrial oxygen uptake to the level of sedentary placebo-treated rats. In conclusion, we provide here evidence that the PHD inhibitor DMOG has detrimental influence on myocardial and mitochondrial function in healthy rats. However, one may suppose that the deleterious influence of PHD inhibition would be potentiated in patients with already poor physical condition. Therefore, the present results prompt us to take into consideration the potential side effects of PHD inhibitors when administrated to patients.

Collaboration


Dive into the Gregory Meyer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cyril Reboul

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Cazorla

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge