Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory P. Wilson is active.

Publication


Featured researches published by Gregory P. Wilson.


Nature | 2007

High-level similarity of dentitions in carnivorans and rodents.

Alistair R. Evans; Gregory P. Wilson; Mikael Fortelius; Jukka Jernvall

The study of mammalian evolution depends greatly on understanding the evolution of teeth and the relationship of tooth shape to diet. Links between gross tooth shape, function and diet have been proposed since antiquity, stretching from Aristotle to Cuvier, Owen and Osborn. So far, however, the possibilities for exhaustive, quantitative comparisons between greatly different tooth shapes have been limited. Cat teeth and mouse teeth, for example, are fundamentally distinct in shape and structure as a result of independent evolutionary change over tens of millions of years. There is difficulty in establishing homology between their tooth components or in summarizing their tooth shapes, yet both carnivorans and rodents possess a comparable spectrum of dietary specializations from animals to plants. Here we introduce homology-free techniques to measure the phenotypic complexity of the three-dimensional shape of tooth crowns. In our geographic information systems (GIS) analysis of 441 teeth from 81 species of carnivorans and rodents, we show that the surface complexity of tooth crowns directly reflects the foods they consume. Moreover, the absolute values of dental complexity for individual dietary classes correspond between carnivorans and rodents, illustrating a high-level similarity between overall tooth shapes despite a lack of low-level similarity of specific tooth components. These results suggest that scale-independent forces have determined the high-level dental shape in lineages that are widely divergent in size, ecology and life history. This link between diet and phenotype will be useful for inferring the ecology of extinct species and illustrates the potential of fast-throughput, high-level analysis of the phenotype.


Nature | 2012

Adaptive radiation of multituberculate mammals before the extinction of dinosaurs

Gregory P. Wilson; Alistair R. Evans; Ian J. Corfe; Peter Smits; Mikael Fortelius; Jukka Jernvall

The Cretaceous–Paleogene mass extinction approximately 66 million years ago is conventionally thought to have been a turning point in mammalian evolution. Prior to that event and for the first two-thirds of their evolutionary history, mammals were mostly confined to roles as generalized, small-bodied, nocturnal insectivores, presumably under selection pressures from dinosaurs. Release from these pressures, by extinction of non-avian dinosaurs at the Cretaceous–Paleogene boundary, triggered ecological diversification of mammals. Although recent individual fossil discoveries have shown that some mammalian lineages diversified ecologically during the Mesozoic era, comprehensive ecological analyses of mammalian groups crossing the Cretaceous–Paleogene boundary are lacking. Such analyses are needed because diversification analyses of living taxa allow only indirect inferences of past ecosystems. Here we show that in arguably the most evolutionarily successful clade of Mesozoic mammals, the Multituberculata, an adaptive radiation began at least 20 million years before the extinction of non-avian dinosaurs and continued across the Cretaceous–Paleogene boundary. Disparity in dental complexity, which relates to the range of diets, rose sharply in step with generic richness and disparity in body size. Moreover, maximum dental complexity and body size demonstrate an adaptive shift towards increased herbivory. This dietary expansion tracked the ecological rise of angiosperms and suggests that the resources that were available to multituberculates were relatively unaffected by the Cretaceous–Paleogene mass extinction. Taken together, our results indicate that mammals were able to take advantage of new ecological opportunities in the Mesozoic and that at least some of these opportunities persisted through the Cretaceous–Paleogene mass extinction. Similar broad-scale ecomorphological inventories of other radiations may help to constrain the possible causes of mass extinctions.


Science | 2010

Cretaceous Extinctions: Multiple Causes

J. David Archibald; William A. Clemens; Kevin Padian; Timothy Rowe; Norman MacLeod; Paul M. Barrett; Andrew J. Gale; Patricia A. Holroyd; Hans-Dieter Sues; Nan Crystal Arens; John R. Horner; Gregory P. Wilson; Mark B. Goodwin; Christopher A. Brochu; Donald L. Lofgren; Joseph H. Hartman; David A. Eberth; Paul B. Wignall; Philip J. Currie; Anne Weil; G. V. R. Prasad; Lowell Dingus; Vincent Courtillot; Angela C. Milner; Andrew R. Milner; Sunil Bajpai; David J. Ward; Ashok Sahni

![Figure][1] Deccan plateau basalts. Lava from Deccan volcanism formed distinct layering. CREDIT: GSFC/NASA In the Review “The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene boundary” (P. Schulte et al. , 5 March, p. [1214][2]), the terminal Cretaceous


Science | 2017

Terawatt-scale photovoltaics: Trajectories and challenges

Nancy Haegel; Robert Margolis; Tonio Buonassisi; David Feldman; Armin Froitzheim; Raffi Garabedian; Martin Green; Stefan W. Glunz; Hans Martin Henning; Burkhard Holder; Izumi Kaizuka; Benjamin Kroposki; Koji Matsubara; Shigeru Niki; Keiichiro Sakurai; R. Schindler; William Tumas; E. R. Weber; Gregory P. Wilson; Michael Woodhouse; Sarah Kurtz

Coordinating technology, policy, and business innovations The annual potential of solar energy far exceeds the worlds total energy consumption. However, the vision of photovoltaics (PVs) providing a substantial fraction of global electricity generation and total energy demand is far from being realized. What technical, infrastructure, economic, and policy barriers need to be overcome for PVs to grow to the multiple terawatt (TW) scale? We assess realistic future scenarios and make suggestions for a global agenda to move toward PVs at a multi-TW scale.


Paleobiology | 2013

Mammals across the K/Pg boundary in northeastern Montana, U.S.A.: dental morphology and body-size patterns reveal extinction selectivity and immigrant-fueled ecospace filling

Gregory P. Wilson

Abstract The Cretaceous/Tertiary (K/Pg) mass extinction has long been viewed as a pivotal event in mammalian evolutionary history, in which the extinction of non-avian dinosaurs allowed mammals to rapidly expand from small-bodied, generalized insectivores to a wide array of body sizes and ecological specializations. Many studies have used global- or continental-scale taxonomic databases to analyze this event on coarse temporal scales, but few studies have documented morphological diversity of mammalian paleocommunities on fine spatiotemporal scales in order to examine ecomorphological selectivity and ecospace filling across this critical transition. Focusing on well-sampled and temporally well-constrained mammalian faunas across the K/Pg boundary in northeastern Montana, I quantified dental-shape disparity and morphospace occupancy via landmark- and semilandmark-based geometric morphometrics and mean body size, body-size disparity, and body-size structure via body-mass estimates. My results reveal several key findings: (1) latest Cretaceous mammals, particularly metatherians and multituberculates, had a greater ecomorphological diversity than is generally appreciated, occupying regions of the morphospace that are interpreted as strict carnivory, plant-dominated omnivory, and herbivory; (2) the decline in dental-shape disparity and body-size disparity across the K/Pg boundary shows a pattern of constructive extinction selectivity against larger-bodied dietary specialists, particularly strict carnivores and taxa with plant-based diets, that suggests the kill mechanism was related to depressed primary productivity rather than a globally instantaneous event; (3) the ecomorphological recovery in the earliest Paleocene was fueled by immigrants, namely three multituberculate families (taeniolabidids, microcosmodontids, eucosmodontids) and to a lesser extent archaic ungulates; and (4) despite immediate increases in the taxonomic richness of eutherians, their much-celebrated post-K/Pg ecomorphological expansion had a slower start than is generally perceived and most likely only began 400,000 to 1 million years after the extinction event.


Journal of Mammalian Evolution | 2005

Mammalian Faunal Dynamics During the Last 1.8 Million Years of the Cretaceous in Garfield County, Montana

Gregory P. Wilson

This study provides an analysis of biotic change in successive mammalian communities during the last 1.8 million years of the Cretaceous (67.3–65.58 Ma) from the Hell Creek Formation in Garfield County, Montana. Results show changes in relative abundances of species, mean individual body size, and to some extent taxonomic composition through the Hell Creek Formation. These results are interpreted as “normal” mammalian responses to fluctuating temperatures during the latest Cretaceous. By contrast, the extinction of 22–27 mammalian species at or near the Cretaceous-Tertiary (K-T) boundary cannot be explained by the coincident cooling interval alone. At the scale of temporal resolution available, these fossil data are inconsistent with an extended gradual pattern of extinction (linear-response) and are most consistent with either a non-linear response pattern for the K-T extinction, resulting from the accumulated stress of multiple long- and short-term environmental perturbations (e.g., climate change, sea-level regression, volcanism, an extraterrestrial impact), or a single, short-term cause (an extraterrestrial impact).


Journal of Vertebrate Paleontology | 2007

Late Cretaceous sudamericid gondwanatherians from India with paleobiogeographic considerations of Gondwanan mammals

Gregory P. Wilson; D. C. Das Sarma; S. Anantharaman

Abstract Gondwanatherians are a distinctive Cretaceous radiation of Gondwanan mammals. Fieldwork in the intertrappean beds of Karnataka and Andhra Pradesh, India has yielded a substantial collection of Maastrichtian mammals, including nine isolated teeth that represent at least two sudamericid gondwanatherians. We name a new taxon, Dakshina jederi, to which we refer six of the specimens and a previously unnamed form (VPL/JU/NKIM/25). The remaining specimens are identified as Gondwanatheria indeterminate. Indias Late Cretaceous mammal fauna includes eutherians, a haramiyidan, and sudamericids. Whereas the eutherians likely represent a dispersal event from Laurasia and the haramiyidan represents a relictual distribution on Gondwana, the gondwanatherians are members of an endemic Gondwanan radiation. The sudamericid Dakshina possesses several derived features that suggest phylogenetic affinities with Lavanify from the Maastrichtian of Madagascar and to a lesser extent with Sudamerica from the Paleocene of Argentina. This pattern of phylogenetic relationships agrees with paleogeographic reconstructions for the breakup of Gondwana that hypothesize close biogeographic ties among India, Madagascar, and South America; however, gaps in our temporal and geographic sampling limit our understanding of biogeographic ties that India shares with Africa, Antarctica, and Australia.


Geological Society of America Bulletin | 2015

High-resolution chronostratigraphy of the terrestrial Cretaceous-Paleogene transition and recovery interval in the Hell Creek region, Montana

Courtney J. Sprain; Paul R. Renne; Gregory P. Wilson; William A. Clemens

Detailed understanding of ecosystem decline and recovery attending the Cretaceous-Paleogene boundary (KPB) mass extinctions is hindered by limited constraints on the pace and tempo of environmental events near the boundary. To mitigate this shortcoming, high-resolution 40Ar/39Ar geochronology was performed on tephras intercalated between fossiliferous terrestrial sediments of the upper Hell Creek and lower Fort Union Formations in the western Williston Basin of northeastern Montana (USA). Tephra samples were collected from 10 stratigraphic sections spanning an area of ∼5000 km2. Several distinctive tephras can be correlated between sections separated spatially by as much as ∼60 km. The tephras are thin distal deposits generally preserved only in lignite beds, which are interbedded with clastic deposits yielding vertebrate faunas of Lancian (late Maastrichtian) to Torrejonian (early Danian) North American Land Mammal Ages. Sanidine from 15 tephra samples was analyzed in 1649 total fusion experiments (1597 on single crystals) and 12 incremental heating analyses of multigrain aliquots. Ages were determined for 13 distinct tephras, ranging from 66.289 ± 0.051 to 64.866 ± 0.023 Ma, including only analytical uncertainties. This level of precision is sufficient to resolve the ages of all of the coal beds that have served as a basis for a regional stratigraphic framework. The data confirm that the Hell Creek–Fort Union formational contact is diachronous, and further support the age of the KPB impact layer at 66.043 ± 0.010 Ma (or ± 0.043 Ma considering systematic uncertainties). Application of the new results to previous magnetostratigraphic data indicates an appreciably compressed time interval between the base of chron C29r and the top of chron C28r, with a maximum duration estimate of 1.421 ± 0.066 Ma. Most notable is the implied brevity of chron C29r, with a maximum estimate of 457 ± 54 ka, and possibly as brief as 345 ± 38 ka, compared to the 710 ka estimate from the Geologic Time Scale 2012 (GTS2012). Further, application of new results to terrestrial biostratigraphy adds higher precision to the timing and tempo of biotic change before and after the KPB. Our results indicate that the timing of pre-KPB ecological decline is constrained to the last ∼200 ka of the Cretaceous, adding further support to the press-pulse extinction hypothesis. Additionally, the duration of the depauperate basal Paleogene Puercan 1 disaster fauna is confined to a 70 ka interval. Faunal recovery in this region, indicated by the appearance of primitive members of the placental mammal radiation and the restoration of taxonomic richness and evenness, occurred within ∼900 ka after the KPB. These results show that biotic recovery after the mass extinction in the terrestrial realm was more rapid than in the marine.


Proceedings of the Royal Society of London B: Biological Sciences | 2010

A new mammal skull from the Lower Cretaceous of China with implications for the evolution of obtuse-angled molars and 'amphilestid' eutriconodonts.

Chun Ling Gao; Gregory P. Wilson; Zhe-Xi Luo; A. Murat Maga; Qingjin Meng; Xuri Wang

We report the discovery of Juchilestes liaoningensis, a new genus and species of eutriconodont mammal from the Lujiatun Site of the Lower Cretaceous Yixian Formation (123.2 ± 1.0 Ma; Lower Aptian). The holotype preserves a partial skull and full dentition. Among eutriconodonts, its lower dentition is similar to taxa formerly assigned to the paraphyletic group of ‘amphilestids’. Some have considered ‘amphilestid’ molars to represent the structural intermediate between the lower molars of the ‘triconodont’ pattern of cusps in alignment and the fully triangulate and more derived therian molars. However, ‘amphilestid’ taxa were previously represented only by the lower dentition. Our study reveals, for the first time, the upper dentition and skull structure of an ‘amphilestid’, and shows that at least some eutriconodonts have an obtuse-angled cusp pattern on molars in middle positions of the long molar series. Its petrosal is similar to those of other eutriconodonts and spalacotheroid ‘symmetrodonts’. Our phylogenetic analyses suggest that (i) Juchilestes is most closely related to the Early Cretaceous Hakusanodon from Japan, in the same Eastern Asiatic geographic region; (ii) ‘amphilestids’ are not monophyletic; and (iii) eutriconodonts might not be a monophyletic group, although this hypothesis must be further tested.


ZooKeys | 2014

The origin and early evolution of metatherian mammals: the Cretaceous record

Thomas E. Williamson; Stephen L. Brusatte; Gregory P. Wilson

Abstract Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg) boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary.

Collaboration


Dive into the Gregory P. Wilson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul R. Renne

Berkeley Geochronology Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David G. DeMar

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian A. Sidor

New York Institute of Technology College of Osteopathic Medicine

View shared research outputs
Top Co-Authors

Avatar

Jack L. Conrad

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Jason J. Head

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge