Grégory Pinon
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Grégory Pinon.
International Journal of Marine Energy | 2013
Paul Mycek; Benoıˆt Gaurier; Grégory Germain; Grégory Pinon; Elie Rivoalen
Abstract The understanding of interaction effects between marine energy converters represents the next step in the research process that should eventually lead to the deployment of such devices. Although some a priori considerations have been suggested recently, very few real condition studies have been carried out concerning this issue. Trials were run on 1/30th scale models of three-bladed marine current turbine prototypes in a flume tank. The present work focuses on the case where a turbine is placed at different locations in the wake of a first one. The interaction effects in terms of performance and wake of the second turbine are examined and compared to the results obtained on the case of one single turbine. Besides, a three-dimensional software, based on a vortex method is currently being developed, and will be used in the near future to model more complex layouts. The experimental study shows that the second turbine is deeply affected by the presence of an upstream device and that a compromise between individual device performance and inter-device spacing is necessary. Numerical results show good agreement with the experiment and are promising for the future modelling of turbine farms.
Computer Physics Communications | 2012
Jean-Marc Cherfils; Grégory Pinon; Elie Rivoalen
Abstract JOSEPHINE is a parallel Smoothed Particle Hydrodynamics program, designed to solve unsteady free-surface flows. The adopted numerical scheme is efficient and has been validated on a first case, where a liquid drop is stretched over the time. Boundary conditions can also be modelled, as it is demonstrated in a second case: the collapse of a water column. Results show good agreement with both reference numerical solutions and experiments. The use of parallelism allows significant reduction of the computational time, even more with large number of particles. JOSEPHINE has been written so that any untrained developers can handle it easily and implement new features. Program summary Program title: JOSEPHINE Catalogue identifier: AELV_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AELV_v1_0.html Program obtainable from: CPC Program Library, Queenʼs University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5139 No. of bytes in distributed program, including test data, etc.: 22 833 Distribution format: tar.gz Programming language: Fortran 90 and OpenMPI Computer: All shared or distributed memory parallel processors, tested on a Xeon W3520, 2.67 GHz. Operating system: Any system with a Fortran 90 compiler and MPI, tested on Debian Linux. Has the code been vectorised or parallelised?: The code has been parallelised but has not been explicitly vectorised. RAM: Dependent upon the number of particles. Classification: 4.12 Nature of problem: JOSEPHINE is designed to solve unsteady incompressible flows with a free-surface and large deformations. Solution method: JOSEPHINE is an implementation of Smoothed Particle Hydrodynamics. SPH is a Lagrangian mesh free particle method, thus, no explicit tracking procedure is required to catch the free surface. Incompressibility is satisfied using a weakly compressible model. Boundary conditions at walls are enforced by means of the ghost particles technique. The free-surface dynamic and kinematic conditions are applied implicitly. Running time: 15 mn on 4 processors for the dam-break case with 5000 particles, dependent upon the real duration (2 s here).
Ocean Dynamics | 2016
Aurélie Rivier; Anne-Claire Bennis; Grégory Pinon; Vanessa Magar; Markus Gross
Monopile foundations of offshore wind turbines modify the hydrodynamics and sediment transport at local and regional scales. The aim of this work is to assess these modifications and to parameterize them in a regional model. In the present study, this is achieved through a regional circulation model, coupled with a sediment transport module, using two approaches. One approach is to explicitly model the monopiles in the mesh as dry cells, and the other is to parameterize them by adding a drag force term to the momentum and turbulence equations. Idealised cases are run using hydrodynamical conditions and sediment grain sizes typical from the area located off Courseulles-sur-Mer (Normandy, France), where an offshore windfarm is under planning, to assess the capacity of the model to reproduce the effect of the monopile on the environment. Then, the model is applied to a real configuration on an area including the future offshore windfarm of Courseulles-sur-Mer. Four monopiles are represented in the model using both approaches, and modifications of the hydrodynamics and sediment transport are assessed over a tidal cycle. In relation to local hydrodynamic effects, it is observed that currents increase at the side of the monopile and decrease in front of and downstream of the monopile. In relation to sediment transport effect, the results show that resuspension and erosion occur around the monopile in locations where the current speed increases due to the monopile presence, and sediments deposit downstream where the bed shear stress is lower. During the tidal cycle, wakes downstream of the monopile reach the following monopile and modify the velocity magnitude and suspended sediment concentration patterns around the second monopile.
14ème Journées de l'Hydrodynamique | 2014
Aurélie Rivier; Anne-Claire Bennis; Grégory Pinon; Markus Gross; Vanessa Magar
The purpose of this work is to find a parameterization which is able to represent properly the modifications caused by offshore wind turbines foundations on the hydrodynamics and sediment transport at regional scales. As a case study, the regional hydrosedimentary model MARS3D is applied on an area including the future offshore wind farm of Courseulles-sur-Mer (Normandy, France). Turbines are represented in the model using two approaches. The first method takes into account monopiles directly in the mesh as dry cells and the second one uses a sub-grid parameterization method by adding drag force term in momentum equations and source terms in k-epsilon turbulence model equations. Comparisons between the results obtained by the different approaches are carried out. As expected, both show impacts on the circulation, with formation of a wake downstream, flow deceleration in front of the pile, and flow acceleration at the side edges. Near-bed erosion occurs in locations where current speeds increase due to the monopile presence, leading to an increase of suspended sediment concentration.
Journal of Physics: Conference Series | 2017
Grégory Pinon; Clément Carlier; Arnaud Fur; Benoit Gaurier; Grégory Germain; Elie Riyoalen
The present paper aims at describing the use of a Synthetic-Eddy-Method (SEM), initially proposed by Jarrin et al. [12], in the 3D Lagrangian Vortex method framework. The SEM method is used here in order to generate a far-field incoming flow with a prescribed ambient turbulence intensity. However, for the account of the diffusive term in the Navier-Stokes equations, a classical Particle Strength Exchange model with a LES eddy viscosity is used. Firstly, the general characteristics of the Synthetic-Eddy-Method will be presented together with its integration in the framework of the developed 3D unsteady Lagrangian Vortex software [27]. The capability of the ambient turbulence model to reproduce a perturbed flow that verifies any turbulence intensity I∞ and any anisotropic ratio (σu :σv :σw ) will be discussed and validated. Then, the capability of the presented ambient turbulence model to compute turbine wakes will also be presented together with first results. Finally, comparisons will be made between the obtained numerical results against experimental data [22, 23] for two levels of ambient turbulence, namely I∞ = 3% and I∞ = 15%. Although the present study was initially performed in the framework of tidal energy, its application to wind energy is straightforward.
Renewable Energy | 2014
Paul Mycek; Benoit Gaurier; Grégory Germain; Grégory Pinon; Elie Rivoalen
Iet Renewable Power Generation | 2010
Fabrice Maganga; Grégory Germain; J. King; Grégory Pinon; Elie Rivoalen
Renewable Energy | 2014
Paul Mycek; Benoit Gaurier; Grégory Germain; Grégory Pinon; Elie Rivoalen
Renewable Energy | 2012
Grégory Pinon; Paul Mycek; Grégory Germain; Elie Rivoalen
European Journal of Mechanics B-fluids | 2012
A. Poupardin; Gaële Perret; Grégory Pinon; N. Bourneton; E. Rivoalen; Jérôme Brossard