Grégory Porras
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Grégory Porras.
Neuropsychopharmacology | 2002
Grégory Porras; Vincenzo Di Matteo; Claudia Fracasso; Guillaume Lucas; Philippe De Deurwaerdère; Silvio Caccia; Ennio Esposito; Umberto Spampinato
In vivo microdialysis and single-cell extracellular recordings were used to assess the involvement of serotonin2A (5-HT2A) and serotonin2C/2B (5-HT2C/2B) receptors in the effects induced by amphetamine and morphine on dopaminergic (DA) activity within the mesoaccumbal and nigrostriatal pathways. The increase in DA release induced by amphetamine (2 mg/kg i.p.) in the nucleus accumbens and striatum was significantly reduced by the selective 5-HT2A antagonist SR 46349B (0.5 mg/kg s.c.), but not affected by the 5-HT2C/2B antagonist SB 206553 (5 mg/kg i.p.). In contrast, the enhancement of accumbal and striatal DA output induced by morphine (2.5 mg/kg s.c.), while insensitive to SR 46349B, was significantly increased by SB 206553. Furthermore, morphine (0.1–10 mg/kg i.v.)-induced increase in DA neuron firing rate in both the ventral tegmental area and the substantia nigra pars compacta was unaffected by SR 46349B (0.1 mg/kg i.v.) but significantly potentiated by SB 206553 (0.1 mg/kg i.v.). These results show that 5-HT2A and 5-HT2C receptors regulate specifically the activation of midbrain DA neurons induced by amphetamine and morphine, respectively. This differential contribution may be related to the specific mechanism of action of the drug considered and to the neuronal circuitry involved in their effect on DA neurons. Furthermore, these results suggest that 5-HT2C receptors selectively modulate the impulse flow–dependent release of DA.
The Journal of Neuroscience | 2009
Amandine Berthet; Grégory Porras; Evelyne Doudnikoff; Holger Stark; Martine Cador; Erwan Bezard; Bertrand Bloch
We have associated behavioral, pharmacological, and quantitative immunohistochemical study in a rat analog of l-DOPA-induced dyskinesia to understand whether alterations in dopamine receptor fate in striatal neurons may be involved in mechanisms leading to movement abnormalities. Detailed analysis at the ultrastructural level demonstrates specific alterations of dopamine D1 receptor (D1R) subcellular localization in striatal medium spiny neurons in l-DOPA-treated 6-hydroxydopamine-lesioned rats with abnormal involuntary movements (AIMs). This includes exaggerated D1R expression at the plasma membrane. However, D1R retains ability of internalization, as a challenge with the potent D1R agonist SKF-82958 induces a strong decrease of labeling at membrane in animals with AIMs. Since a functional cross talk between D1R and D3R has been suggested, we hypothesized that their coactivation by dopamine derived from l-DOPA might anchor D1R at the membrane. Accordingly, cotreatment with l-DOPA and the D3R antagonist ST 198 restores normal level of membrane-bound D1R. Together, these results demonstrate that AIMs are related to abnormal D1R localization at the membrane and intraneuronal trafficking dysregulation, and suggest that strategies aiming at disrupting the D1R–D3R cross talk might reduce l-DOPA-induced dyskinesia by reducing D1R availability at the membrane.
The Journal of Neuroscience | 2007
Stephen J. Gold; Chau V. Hoang; Bryan W. Potts; Grégory Porras; Elsa Y. Pioli; Ki Woo Kim; Agnès Nadjar; Chuan Qin; Gerald J. LaHoste; Qin Li; Bernard Bioulac; Jeffrey L. Waugh; Eugenia V. Gurevich; Rachael L. Neve; Erwan Bezard
Chronic l-dopa treatment of Parkinsons disease (PD) often leads to debilitating involuntary movements, termed l-dopa-induced dyskinesia (LID), mediated by dopamine (DA) receptors. RGS9–2 is a GTPase accelerating protein that inhibits DA D2 receptor-activated G proteins. Herein, we assess the functional role of RGS9–2 on LID. In monkeys, Western blot analysis of striatal extracts shows that RGS9–2 levels are not altered by MPTP-induced DA denervation and/or chronic l-dopa administration. In MPTP monkeys with LID, striatal RGS9–2 overexpression – achieved by viral vector injection into the striatum – diminishes the involuntary movement intensity without lessening the anti-parkinsonian effects of the D1/D2 receptor agonist l-dopa. In contrasts, in these animals, striatal RGS9–2 overexpression diminishes both the involuntary movement intensity and the anti-parkinsonian effects of the D2/D3 receptor agonist ropinirole. In unilaterally 6-OHDA-lesioned rats with LID, we show that the time course of viral vector-mediated striatal RGS9–2 overexpression parallels the time course of improvement of l-dopa-induced involuntary movements. We also find that unilateral 6-OHDA-lesioned RGS9−/− mice are more susceptible to l-dopa-induced involuntary movements than unilateral 6-OHDA-lesioned RGS9+/+ mice, albeit the rotational behavior – taken as an index of the anti-parkinsonian response – is similar between the two groups of mice. Together, these findings suggest that RGS9–2 plays a pivotal role in LID pathophysiology. However, the findings also suggest that increasing RGS9–2 expression and/or function in PD patients may only be a suitable therapeutic strategy to control involuntary movements induced by nonselective DA agonist such as l-dopa.
Science Translational Medicine | 2010
Mohamed R. Ahmed; Amandine Berthet; Evgeny Bychkov; Grégory Porras; Qin Li; Bernard Bioulac; Yonatan T. Carl; Bertrand Bloch; Seunghyi Kook; Incarnation Aubert; Sandra Dovero; Evelyne Doudnikoff; Vsevolod V. Gurevich; Eugenia V. Gurevich; Erwan Bezard
G protein–coupled receptor kinase 6, which promotes desensitization of the dopamine receptor, alleviates dyskinesia without compromising the antiparkinsonian effect of l-dopa. Treatment for Tremors Without Side Effects As neurodegenerative diseases go, Parkinson’s disease is fairly treatable. Oral doses of l-dopa can still the tremors and normalize a patient’s movements—for a time. Eventually, however, most patients develop involuntary aimless gestures call dyskinesias, thought to be a result of oversensitive dopamine responses in the brain, caused by years of taking l-dopa. Now, Bezard and his colleagues have taken aim at a regulator of the dopamine receptor, G protein–coupled receptor kinase 6 (GRK6), to combat these disturbing side effects. The dopamine receptor, like others in its family, will desensitize after use. In this state, the receptor can no longer be activated and is taken up by the cell. The first step in desensitization is the phosphorylation of the receptor by GRK6. After many years of l-dopa, the amount of GRK in the brain starts to decline and the machinery that desensitizes the receptor does not work properly, leading, it is believed, to the uncontrolled movements of dyskinesia. The authors reinstated GRKs with gene therapy in mice that had an induced parkinsonian syndrome and showed that the dyskinesia-like movements of the mice were much reduced and, as expected, desensitization of the dopamine receptor was normalized. Repeating this experiment in macaque monkeys, in which a Parkinson-like disease had been artificially induced by a toxic agent, gave similar results: Increasing GRK6 expression in the brain could markedly improve the dyskinesia-like side effects of long-term l-dopa treatment, likely by correcting the desensitization of dopamine receptors. Notably, correction of GRK6 did not interfere with the therapeutic effects of l-dopa—an important attribute for the eventual application of such a therapy. These authors have identified a signaling pathway that seems to be responsible for the worst side effect of the standard treatment for Parkinson’s disease. Manipulation of one of its members, GRK6, or other components of dopamine receptor sensitization may prove to be an effective treatment for these side effects without hindering the efficacy of one of the most useful drugs in the neurologist’s armamentarium. Parkinson’s disease is caused primarily by degeneration of brain dopaminergic neurons in the substantia nigra and the consequent deficit of dopamine in the striatum. Dopamine replacement therapy with the dopamine precursor l-dopa is the mainstay of current treatment. After several years, however, the patients develop l-dopa–induced dyskinesia, or abnormal involuntary movements, thought to be due to excessive signaling via dopamine receptors. G protein–coupled receptor kinases (GRKs) control desensitization of dopamine receptors. We found that dyskinesia is attenuated by lentivirus-mediated overexpression of GRK6 in the striatum in rodent and primate models of Parkinson’s disease. Conversely, reduction of GRK6 concentration by microRNA delivered with lentiviral vector exacerbated dyskinesia in parkinsonian rats. GRK6 suppressed dyskinesia in monkeys without compromising the antiparkinsonian effects of l-dopa and even prolonged the antiparkinsonian effect of a lower dose of l-dopa. Our finding that increased availability of GRK6 ameliorates dyskinesia and increases duration of the antiparkinsonian action of l-dopa suggests a promising approach for controlling both dyskinesia and motor fluctuations in Parkinson’s disease.
Movement Disorders | 2013
Erwan Bezard; Elisabetta Tronci; Elsa Y. Pioli; Qin Li; Grégory Porras; Anders Björklund; Manolo Carta
The serotonin (5‐hydroxytryptamine [5HT]) system has recently emerged as an important player in the appearance of l‐3,4‐dihydroxyphenylalanine (levodopa [l‐dopa])–induced dyskinesia in animal models of Parkinsons disease. In fact, dopamine released as a false transmitter from serotonin neurons appears to contribute to the pulsatile stimulation of dopamine receptors, leading to the appearance of the abnormal involuntary movements. Thus, drugs able to dampen the activity of serotonin neurons hold promise for the treatment of dyskinesia. The authors investigated the ability of the mixed 5‐HT 1A/1B receptor agonist eltoprazine to counteract l‐dopa–induced dyskinesia in 6‐hydroxydopamine‐lesioned rats and in 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐treated macaques. The data demonstrated that eltoprazine is extremely effective in suppressing dyskinesia in experimental models, although this effect was accompanied by a partial worsening of the therapeutic effect of l‐dopa. Interestingly, eltoprazine was found to (synergistically) potentiate the antidyskinetic effect of amantadine. The current data indicated that eltoprazine is highly effective in counteracting dyskinesia in preclinical models. However, the partial worsening of the l‐dopa effect observed after eltoprazine administration represents a concern; whether this side effect is due to a limitation of the animal models or to an intrinsic property of eltoprazine needs to be addressed in ongoing clinical trials. The data also suggest that the combination of low doses of eltoprazine with amantadine may represent a valid strategy to increase the antidyskinetic effect and reduce the eltoprazine‐induced worsening of l‐dopa therapeutic effects.
Neuropsychopharmacology | 2004
Sylvia Navailles; Philippe De Deurwaerdère; Grégory Porras; Umberto Spampinato
During recent years, much attention has been devoted at investigating the modulatory role of central 5-HT2C receptors on dopamine (DA) neuron activity, and it has been proposed that these receptors modulate selectively DA exocytosis associated with increased firing of DA neurons. In the present study, using in vivo microdialysis in the nucleus accumbens (NAc) and the striatum of halothane-anesthetized rats, we addressed this hypothesis by assessing the ability of 5-HT2C agents to modulate the increase in DA outflow induced by haloperidol and cocaine, of which the effects on DA outflow are associated or not with an increase in DA neuron firing, respectively. The intraperitoneal administration of cocaine (10–30 mg/kg) induced a dose-dependent increase in DA extracellular levels in the NAc and the striatum. The effect of 15 mg/kg cocaine was potentiated by the mixed 5-HT2C/2B antagonist SB 206553 (5 mg/kg i.p.) and the selective 5-HT2C antagonist SB 242084 (1 mg/kg i.p.) in both brain regions. The mixed 5-HT2C/2B agonist, Ro 60-0175 (1 mg/kg i.p.), failed to affect cocaine-induced DA outflow, but reduced significantly the increase in DA outflow induced by the subcutaneous administration of 0.1 mg/kg haloperidol. The obtained results provide evidence that 5-HT2C receptors exert similar effects in both the NAc and the striatum, and they modulate DA exocytosis also when its increase occurs independently from an increase in DA neuron impulse activity. Furthermore, they show that 5-HT2C agonists, at variance with 5-HT2C antagonists, exert a preferential control on the impulse-stimulated release of DA.
Journal of Clinical Investigation | 2012
Grégory Porras; Amandine Berthet; Benjamin Dehay; Qin Li; Laurent Ladépêche; Elisabeth Normand; Sandra Dovero; Audrey Martinez; Evelyne Doudnikoff; Marie-Laure Martin-Negrier; Qin Chuan; Bertrand Bloch; Daniel Choquet; Eric Boué-Grabot; Laurent Groc; Erwan Bezard
L-DOPA-induced dyskinesia (LID), a detrimental consequence of dopamine replacement therapy for Parkinsons disease, is associated with an alteration in dopamine D1 receptor (D1R) and glutamate receptor interactions. We hypothesized that the synaptic scaffolding protein PSD-95 plays a pivotal role in this process, as it interacts with D1R, regulates its trafficking and function, and is overexpressed in LID. Here, we demonstrate in rat and macaque models that disrupting the interaction between D1R and PSD-95 in the striatum reduces LID development and severity. Single quantum dot imaging revealed that this benefit was achieved primarily by destabilizing D1R localization, via increased lateral diffusion followed by increased internalization and diminished surface expression. These findings indicate that altering D1R trafficking via synapse-associated scaffolding proteins may be useful in the treatment of dyskinesia in Parkinsons patients.
Cold Spring Harbor Perspectives in Medicine | 2012
Grégory Porras; Qin Li; Erwan Bezard
The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate models of Parkinsons disease (PD) reproduce most, although not all, of the clinical and pathological hallmarks of PD. The present contribution presents the possibilities offered by the MPTP monkey models of PD to readers with minimal knowledge of PD, emphasizing the diversity of species, route and regimen of administration, symptoms and pathological features. Readers would eventually find out that there is not a single MPTP monkey model of PD but instead MPTP monkey models of PD, each addressing a specific experimental need.
European Journal of Neuroscience | 2003
Grégory Porras; Philippe De Deurwaerdère; Delphine Moison; Umberto Spampinato
Serotonin3 (5‐HT3) receptors can affect motor control through an interaction with the nigrostriatal dopamine (DA) neurons, but the neurochemical basis for this interaction remains controversial. In this study, using in vivo microdialysis, we assessed the hypothesis that 5‐HT3 receptor‐dependent control of striatal DA release is conditioned by the degree of DA and/or 5‐HT neuron activity and the means of DA release (impulse‐dependent vs. impulse‐independent). The different DA‐releasing effects of morphine (1 and 10 mg/kg), haloperidol (0.01 mg/kg), amphetamine (1 and 2.5 mg/kg), and cocaine (10 and 20 mg/kg) were studied in the striatum of freely moving rats administered selective 5‐HT3 antagonists ondansetron (0.1 mg/kg) or MDL 72222 (0.03 mg/kg). Neither of the 5‐HT3 antagonists modified basal DA release by itself. Pretreatment with ondansetron or MDL 72222 reduced the increase in striatal DA release induced by 10 mg/kg morphine but not by 1 mg/kg morphine, haloperidol, amphetamine or cocaine. The effect of 10 mg/kg morphine was also prevented by intrastriatal ondansetron (1 µm) administration. Reverse dialysis with ondansetron also reduced the increase in DA release induced by the combination of haloperidol and the 5‐HT reuptake inhibitor citalopram (1 mg/kg). Considering the different DA and 5‐HT‐releasing properties of the drugs used, our results demonstrate that striatal 5‐HT3 receptors control selectively the depolarization‐dependent exocytosis of DA only when central DA and 5‐HT tones are increased concomitantly.
PLOS ONE | 2010
Quentin Barraud; Ibrahim Obeid; Incarnation Aubert; Grégory Barrière; Hugues Contamin; Steve McGuire; Paula Ravenscroft; Grégory Porras; François Tison; Erwan Bezard; Imad Ghorayeb
Background The A11 diencephalospinal pathway is crucial for sensorimotor integration and pain control at the spinal cord level. When disrupted, it is thought to be involved in numerous painful conditions such as restless legs syndrome and migraine. Its anatomical organization, however, remains largely unknown in the non-human primate (NHP). We therefore characterized the anatomy of this pathway in the NHP. Methods and Findings In situ hybridization of spinal dopamine receptors showed that D1 receptor mRNA is absent while D2 and D5 receptor mRNAs are mainly expressed in the dorsal horn and D3 receptor mRNA in both the dorsal and ventral horns. Unilateral injections of the retrograde tracer Fluoro-Gold (FG) into the cervical spinal enlargement labeled A11 hypothalamic neurons quasi-exclusively among dopamine areas. Detailed immunohistochemical analysis suggested that these FG-labeled A11 neurons are tyrosine hydroxylase-positive but dopa-decarboxylase and dopamine transporter-negative, suggestive of a L-DOPAergic nucleus. Stereological cell count of A11 neurons revealed that this group is composed by 4002±501 neurons per side. A 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) intoxication with subsequent development of a parkinsonian syndrome produced a 50% neuronal cell loss in the A11 group. Conclusion The diencephalic A11 area could be the major source of L-DOPA in the NHP spinal cord, where it may play a role in the modulation of sensorimotor integration through D2 and D3 receptors either directly or indirectly via dopamine formation in spinal dopa-decarboxylase-positives cells.