Gregory R. Sivakoff
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregory R. Sivakoff.
The Astrophysical Journal | 2005
Andres Jordan; Patrick Cote; John P. Blakeslee; Laura Ferrarese; Dean E. McLaughlin; Simona Mei; Eric W. Peng; John L. Tonry; David Merritt; Milos Milosavljevic; Craig L. Sarazin; Gregory R. Sivakoff; Michael J. West
We have measured half-light radii, rh, for thousands of globular clusters (GCs) belonging to the 100 early-type galaxies observed in the ACS Virgo Cluster Survey and the elliptical galaxy NGC 4697. An analysis of the dependencies of the measured half-light radii on both the properties of the GCs themselves and their host galaxies reveals that, in analogy with GCs in the Galaxy but in a milder fashion, the average half-light radius increases with increasing galactocentric distance or, alternatively, with decreasing galaxy surface brightness. For the first time, we find that the average half-light radius decreases with the host galaxy color. We also show that there is no evidence for a variation of rh with the luminosity of the GCs. Finally, we find in agreement with previous observations that the average rh depends on the color of GCs, with red GCs being ~17% smaller than their blue counterparts. We show that this difference is probably a consequence of an intrinsic mechanism, rather than projection effects, and that it is in good agreement with the mechanism proposed by Jordan. We discuss these findings in light of two simple pictures for the origin of the rh of GCs and show that both lead to a behavior in rough agreement with the observations. After accounting for the dependencies on galaxy color, galactocentric radius, and underlying surface brightness, we show that the average GC half-light radii rh can be successfully used as a standard ruler for distance estimation. We outline the methodology, provide a calibration for its use, and discuss the prospects for this distance estimator with future observing facilities. We find rh = 2.7 ± 0.35 pc for GCs with (g - z) = 1.2 mag in a galaxy with color (g - z)gal = 1.5 mag and at an underlying surface z-band brightness of μz = 21 mag arcsec-2. Using this technique, we place an upper limit of 3.4 Mpc on the 1 σ line-of-sight depth of the Virgo Cluster. Finally, we examine the form of the rh distribution for our sample galaxies and provide an analytic expression that successfully describes this distribution.
Monthly Notices of the Royal Astronomical Society | 2011
M. Coriat; S. Corbel; L. Prat; J. C. A. Miller-Jones; D. Cseh; A. K. Tzioumis; Catherine Brocksopp; Jerome Rodriguez; R. P. Fender; Gregory R. Sivakoff
In recent years, much effort has been devoted to unravelling the connection between the accretion flow and the jets in accreting compact objects. In the present work, we report new constraints on these issues, through the long-term study of the radio and X-ray behaviour of the black hole candidate H1743−322. This source is known to be one of the ‘outliers’ of the universal radio/X-ray correlation, i.e. a group of accreting stellar-mass black holes displaying fainter radio emission for a given X-ray luminosity than expected from the correlation. Our study shows that the radio and X-ray emission of H1743−322 are strongly correlated at high luminosity in the hard spectral state. However, this correlation is unusually steep for a black hole X-ray binary: b ∼ 1.4 (with Lradio ∝ L b ). Below a critical luminosity, the correlation becomes shallower until it rejoins the standard correlation with b ∼ 0.6. Based on these results, we first show that the steep correlation can be explained if the inner accretion flow is radiatively efficient during the hard state, in contrast to what is usually assumed for black hole X-ray binaries in this spectral state. The transition between the steep and the standard correlation would therefore reflect a change from a radiatively efficient to a radiatively inefficient accretion flow. Finally, we investigate the possibility that the discrepancy between ‘outliers’ and ‘standard’ black holes arises from the outflow properties rather than from the accretion flow.
Nature | 2011
Amy E. Reines; Gregory R. Sivakoff; Kelsey E. Johnson; Crystal Lee Brogan
Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first ‘seed’ black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize 2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize 2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize 2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.
The Astrophysical Journal | 2003
Craig L. Sarazin; Arunav Kundu; Jimmy A. Irwin; Gregory R. Sivakoff; Elizabeth Lyon Blanton; Scott W. Randall
A high fraction of the low-mass X-ray binaries (LMXBs) in early-type galaxies are associated with globular clusters (GCs). Here we discuss the correlations between LMXBs and GCs in a sample of four early-type galaxies with X-ray source lists determined from Chandra observations. There is some evidence that the fraction of LMXBs associated with GCs (fX-GC) increases along the Hubble sequence from spiral bulges (or spheroids) to S0s to Es to cDs. On the other hand, the fraction of GCs that contain X-ray sources appears to be roughly constant at fGC-X ~ 4%. There is a strong tendency for the X-ray sources to be associated with the optically more luminous GCs. However, this correlation is consistent with a constant probability of finding an LMXB per unit optical luminosity; that is, it seems to result primarily from the larger number of stars in optically luminous GCs. The probability of finding a bright LMXB per unit optical luminosity in the GCs is about 1.5 ? 10-7 LMXBs per L?,I for LX 1 ? 1038 ergs s-1 (0.3-10 keV) and rises to about 2.0 ? 10-7 LMXBs per L?,I at lower X-ray luminosities, LX 3 ? 1037 ergs s-1. This frequency appears to be roughly constant for different galaxies, including the bulges of the Milky Way and M31. There is a tendency for the X-ray sources to be found preferentially in redder GCs, which is independent of optical luminosity correlation. This seems to indicate that the evolution of X-ray binaries in a GC is affected by either the metallicity or the age of the GC, with younger and/or more metal rich GCs having more LMXBs. There is no strong difference in the X-ray luminosities of GC and non-GC LMXBs. There is a weak tendency for the brightest LMXBs, whose luminosities exceed the Eddington luminosity for a 1.4 M? neutron star, to avoid GCs. That may indicate that black hole X-ray binaries are somewhat less likely to be found in GCs, as seems to be true in our Galaxy. On the other hand, there are some luminous LMXBs associated with GCs. There is no clear evidence that the X-ray spectra or variability of GC and non-GC X-ray sources differ. We also find no evidence for a difference in the spatial distribution of GC and non-GC LMXBs. Many of these results are similar to those found in NGC 1399 and NGC 4472 by Angelini et al. and Kundu et al., respectively.
The Astrophysical Journal | 2009
Paul Martini; Gregory R. Sivakoff; John S. Mulchaey
We have measured the luminous active galactic nucleus (AGN) population in a large sample of clusters of galaxies and find evidence for a substantial increase in the cluster AGN population from z ∼ 0.05 to z ∼ 1.3. The present sample now includes 32 clusters of galaxies, including 15 clusters above z = 0.4, which corresponds to a three-fold increase compared to our previous work at high redshift. At z< 0.4, we have obtained new observations of AGN candidates in six additional clusters and found no new luminous AGN in cluster members. Our total sample of 17 low-redshift clusters contains only two luminous AGNs, while at high redshifts there are 18 such AGNs, or an average of more than one per cluster. We have characterized the evolution of luminous X-ray AGNs as the fraction of galaxies with MR <M ∗ R (z) + 1 that host AGNs with rest-frame, hard X-ray [2–10 keV] luminosities LX,H 10 43 erg s −1 . The AGN fraction increases from fA = 0.134 +0.18 −0.087 % at a median z = 0.19 to fA = 1.00 +0.29 −0.23 %a t a median z = 0.72. Our best estimate of the evolution is a factor of 8 increase to z = 1 and the statistical significance of the increase is 3.8σ . This dramatic evolution is qualitatively similar to the evolution of the starforming galaxy population in clusters known as the Butcher–Oemler effect. We discuss the implications of this result for the coevolution of black holes and galaxies in clusters, the evolution of AGN feedback, searches for clusters with the Sunyaev–Zel’dovich effect, and the possible detection of environment-dependent downsizing.
Monthly Notices of the Royal Astronomical Society | 2009
J. H. Croston; Ralph P. Kraft; M. J. Hardcastle; Mark Birkinshaw; Diana M Worrall; P. E. J. Nulsen; Robert F. Penna; Gregory R. Sivakoff; Andres Jordan; Nicola J. Brassington; Daniel A. Evans; W. Forman; M. Gilfanov; J. L. Goodger; William E. Harris; C. J. Jones; Adrienne Marie Juett; Stephen S. Murray; Somak Raychaudhury; Craig L. Sarazin; Rasmus Voss; Kristin A. Woodley
We present new results on the shock around the southwest radio lobe of Centaurus A using data from the Chandra Very Large Programme observations (740 ks total observing time). The X-ray spectrum of the emission around the outer southwestern edge of the lobe is well described by a single power-law model with Galactic absorption ‐ thermal models are strongly disfavoured, except in the region closest to the nucleus. We conclude that a significant fraction of the X-ray emission around the southwest part of the lobe is synchrotron, not thermal. We infer that in the region where the shock is strongest and the ambient gas density lowest, the inflation of the lobe is accelerating particles to X-ray sync hrotron emitting energies, similar to supernova remnants such as SN1006. This interpretation resolves a problem of our earlier, purely thermal, interpretation for this emission, namely t hat the density compression across the shock was required to be much larger than the theoretically expected factor of 4. We describe a self-consistent model for the lobe dynamics and shock properties using the shell of thermal emission to the north of the lobe to estimate the lobe pressure. Based on this model, we estimate that the lobe is expanding to the southwest with a velocity of �2600 km s 1 , roughly Mach 8 relative to the ambient medium. We discuss the spatial variation of spectral index across the shock region, concluding that our observations constrain γmax for the accelerated particles to be �10 8 at the strongest part of the shock, consistent with expectat ions from diffusive shock acceleration theory. Finally, we consider the implications of these results for the production of ultra-high energy cosmic rays (UHECRs) and TeV emission from Centaurus A, concluding that the shock front region is unlikely to be a significant source of UHECRs, but that TeV emission from this region is expected at levels comparable to current limits at TeV energies, for plausible assumed magnetic field strength s.
The Astrophysical Journal | 2008
Xinyu Dai; Francesco Shankar; Gregory R. Sivakoff
The intrinsic fraction of broad absorption line quasars (BALQSOs) is important in constraining geometric and evolutionary models of quasars. We present the fraction of BALQSOs in 2MASS-detected quasars within the SDSS DR3 sample in the redshift range of 1.7 ≤ z ≤ 4.38. The fraction of BALQSOs is 40.4+ 3.4−3.3% in the 2MASS 99% database Ks-band completeness sample, and 38.5+ 1.7−1.7% in the larger 2MASS sample extending below the completeness limit. These fractions are significantly higher than the 26% reported in the optical bands for the same parent sample. We also present the fraction of BALQSOs as functions of apparent magnitudes, absolute magnitudes, and redshift in the 2MASS and SDSS bands. The 2MASS fractions are consistently higher than the SDSS fractions in every comparison, and the BALQSO fractions steadily increase with wavelength from the SDSS u to the 2MASS Ks bands. Furthermore, the i − Ks color distributions of BALQSOs and non-BALQSOs indicate that BALQSOs are redder than non-BALQSOs, with a K-S test probability of 2 × 10−12. These results are consistent with the spectral difference between BALQSOs and non-BALQSOs including both the absorption troughs and dust extinction in BALQSOs, which leads to significant selection biases against BALQSOs in the optical bands. Using a simple simulation incorporating the luminosity function of quasars and the amount of obscuration for BALQSOs, we simultaneously fit the BALQSO fractions in the SDSS and 2MASS bands. We obtain a true BALQSO fraction of (43 ± 2)% for luminous quasars (MKs −30.1 mag).
The Astrophysical Journal | 2007
Gregory R. Sivakoff; Andrés Jordán; Craig L. Sarazin; John P. Blakeslee; Patrick Cote; Laura Ferrarese; Adrienne Marie Juett; Simona Mei; Eric W. Peng
LMXBs form efficiently in GCs. By combining Chandra and HST ACS observations of 11 massive early-type galaxies in the Virgo Cluster, we use the most accurate identification of LMXBs and GCs to date to explore the optical properties of 270 GCs with LMXBs and 6488 GCs without detectable X-ray emission. More massive, redder, and more compact GCs are more likely to contain LMXBs. Unlike Galactic GCs, a large number of GCs with LMXBs have half-mass relaxation times >2.5 Gyr; GCs need not survive for more than five relaxation timescales to produce LMXBs. By fitting the dependence of the expected number of LMXBs per GC, λt, on the GC mass M, color (g - z), and half-mass radius rh,cor, we find that λt ∝ M1.24±0.08 × 10r. This rules out that the number of LMXBs per GC is linearly proportional to GC mass (99.89% confidence limit) and leads us to predict that most GCs with high X-ray luminosities contain a single LMXB. The detailed dependence of λt on GC properties appears mainly due to a dependence on the encounter rate Γh and the metallicity Z, λt ∝ ΓZ0.39±0.07. Our analysis provides strong evidence that dynamical formation and metallicity play the primary roles in determining the presence of an LMXB in extragalactic GCs. The shallower than linear encounter rate dependence requires an explanation by theories of dynamical binary formation. A metallicity-dependent variation in the number of neutron stars and black holes per unit GC mass, effects from irradiation-induced winds, or suppression of magnetic braking in metal-poor stars may all be consistent with our abundance dependence; all three scenarios require further development.
Monthly Notices of the Royal Astronomical Society | 2012
J. C. A. Miller-Jones; Gregory R. Sivakoff; D. Altamirano; M. Coriat; S. Corbel; V. Dhawan; Hans A. Krimm; Ronald A. Remillard; Michael P. Rupen; D. M. Russell; R. P. Fender; Sebastian Heinz; Elmar Körding; Dipankar Maitra; Sera Markoff; Simone Migliari; Craig L. Sarazin; V. Tudose
We present an intensive radio and X-ray monitoring campaign on the 2009 outburst of the Galactic black hole candidate X-ray binary H1743−322. With the high angular resolution of the Very Long Baseline Array, we resolve the jet ejection event and measure the proper motions of the jet ejecta relative to the position of the compact core jets detected at the beginning of the outburst. This allows us to accurately couple the moment when the jet ejection event occurred with X-ray spectral and timing signatures. We find that X-ray timing signatures are the best diagnostic of the jet ejection event in this outburst, which occurred as the X-ray variability began to decrease and the Type C quasi-periodic oscillations disappeared from the X-ray power density spectrum. However, this sequence of events does not appear to be replicated in all black hole X-ray binary outbursts, even within an individual source. In our observations of H1743−322, the ejection was contemporaneous with a quenching of the radio emission, prior to the start of the major radio flare. This contradicts previous assumptions that the onset of the radio flare marks the moment of ejection. The jet speed appears to vary between outbursts, with a possible positive correlation with outburst luminosity. The compact core radio jet reactivated on transition to the hard intermediate state at the end of the outburst, and not when the source reached the low hard spectral state. Comparison with the known near-infrared behaviour of the compact jets suggests a gradual evolution of the compact jet power over a few days near the beginning and end of an outburst.
The Astrophysical Journal | 2012
Jay Strader; Laura Chomiuk; Thomas J. Maccarone; J. C. A. Miller-Jones; Anil C. Seth; Craig O. Heinke; Gregory R. Sivakoff
With a goal of searching for accreting intermediate-mass black holes (IMBHs), we report the results of ultra-deep Jansky Very Large Array radio continuum observations of the cores of three Galactic globular clusters: M15, M19, and M22. We reach rms noise levels of 1.5-2.1 μJy beam–1 at an average frequency of 6 GHz. No sources are observed at the center of any of the clusters. For a conservative set of assumptions about the properties of the accretion, we set 3σ upper limits on IMBHs from 360 to 980 M ☉. These limits are among the most stringent obtained for any globular cluster. They add to a growing body of work that suggests either (1) IMBHs 1000 M ☉ are rare in globular clusters or (2) when present, IMBHs accrete in an extraordinarily inefficient manner.