Gregory S. McCarty
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregory S. McCarty.
Journal of Nanobiotechnology | 2005
Gilles K. Kouassi; Joseph Irudayaraj; Gregory S. McCarty
Magnetic nanoparticles (Fe3O4) were synthesized by thermal co-precipitation of ferric and ferrous chlorides. The sizes and structure of the particles were characterized using transmission electron microscopy (TEM). The size of the particles was in the range between 9.7 and 56.4 nm. Cholesterol oxidase (CHO) was successfully bound to the particles via carbodiimide activation. FTIR spectroscopy was used to confirm the binding of CHO to the particles. The binding efficiency was between 98 and 100% irrespective of the amount of particles used. Kinetic studies of the free and bound CHO revealed that the stability and activity of the enzyme were significantly improved upon binding to the nanoparticles. Furthermore, the bound enzyme exhibited a better tolerance to pH, temperature and substrate concentration. The activation energy for free and bound CHO was 13.6 and 9.3 kJ/mol, respectively. This indicated that the energy barrier of CHO activity was reduced upon binding onto Fe3O4 nanoparticles. The improvements observed in activity, stability, and functionality of CHO resulted from structural and conformational changes of the bound enzyme. The study indicates that the stability and activity of CHO could be enhanced via attachment to magnetic nanoparticles and subsequently will contribute to better uses of this enzyme in various biological and clinical applications.
Analytical Chemistry | 2010
Pavel Takmakov; Matthew K. Zachek; Richard B. Keithley; Paul L. Walsh; Carrie L. Donley; Gregory S. McCarty; R. Mark Wightman
Electrode fouling decreases sensitivity and can be a substantial limitation in electrochemical experiments. In this work we describe an electrochemical procedure that constantly renews the surface of a carbon microelectrode using periodic triangle voltage excursions to an extended anodic potential at a scan rate of 400 V s(-1). This methodology allows for the regeneration of an electrochemically active surface and restores electrode sensitivity degraded by irreversible adsorption of chemical species. We show that repeated voltammetric sweeps to moderate potentials in aqueous solution causes oxidative etching of carbon thereby constantly renewing the electrochemically active surface. Oxidative etching was established by tracking surface-localized fluorine atoms with XPS, by monitoring changes in carbon surface morphology with AFM on pyrolyzed photoresist films, and also by optical and electron microscopy. The use of waveforms with extended anodic potentials showed substantial increases in sensitivity toward the detection of catechols. This enhancement arose from the adsorption of the catechol moiety that could be maintained with a constant regeneration of the electrode surface. We also demonstrate that application of the extended waveform could restore the sensitivity of carbon microelectrodes diminished by irreversible adsorption (electrode fouling) of byproducts resulting from the electrooxidation and polymerization of tyramine. Overall, this work brings new insight into the factors that affect electrochemical processes at carbon electrodes and provides a simple method to remove or reduce fouling problems associated with many electrochemical experiments.
Biomagnetic Research and Technology | 2005
Gilles K. Kouassi; Joseph Irudayaraj; Gregory S. McCarty
BackgroundMagnetic nanoparticles have been significantly used for coupling with biomolecules, due to their unique properties.MethodsMagnetic nanoparticles were synthesized by thermal co-precipitation of ferric and ferrous chloride using two different base solutions. Glucose oxidase was bound to the particles by direct attachment via carbodiimide activation or by thiophene acetylation of magnetic nanoparticles. Transmission electron microscopy was used to characterize the size and structure of the particles while the binding of glucose oxidase to the particles was confirmed using Fourier transform infrared spectroscopy.ResultsThe direct binding of glucose oxidase via carbodiimide activity was found to be more effective, resulting in bound enzyme efficiencies between 94–100% while thiophene acetylation was 66–72% efficient. Kinetic and stability studies showed that the enzyme activity was more preserved upon binding onto the nanoparticles when subjected to thermal and various pH conditions. The overall activity of glucose oxidase was improved when bound to magnetic nanoparticlesConclusionBinding of enzyme onto magnetic nanoparticles via carbodiimide activation is a very efficient method for developing bioconjugates for biological applications
Analytical Chemistry | 2010
Pavel Takmakov; Matthew K. Zachek; Richard B. Keithley; Elizabeth S. Bucher; Gregory S. McCarty; R. Mark Wightman
Transient local pH changes in the brain are important markers of neural activity that can be used to follow metabolic processes that underlie the biological basis of behavior, learning and memory. There are few methods that can measure pH fluctuations with sufficient time resolution in freely moving animals. Previously, fast-scan cyclic voltammetry at carbon-fiber microelectrodes was used for the measurement of such pH transients. However, the origin of the potential dependent current in the cyclic voltammograms for pH changes recorded in vivo was unclear. The current work explored the nature of these peaks and established the origin for some of them. A peak relating to the capacitive nature of the pH CV was identified. Adsorption of electrochemically inert species, such as aromatic amines and calcium could suppress this peak, and is the origin for inconsistencies regarding in vivo and in vitro data. Also, we identified an extra peak in the in vivo pH CV relating to the presence of 3,4-dihydroxyacetic acid (DOPAC) in the brain extracellular fluid. To evaluate the in vivo performance of the carbon-fiber sensor, carbon dioxide inhalation by an anesthetized rat was used to induce brain acidosis induced by hypercapnia. Hypercapnia is demonstrated to be a useful tool to induce robust in vivo pH changes, allowing confirmation of the pH signal observed with FSCV.
Analytical Chemistry | 2009
Matthew K. Zachek; Pavel Takmakov; Benjamin Moody; R. Mark Wightman; Gregory S. McCarty
Microfabricated structures utilizing pyrolyzed photoresist have been shown to be useful for monitoring electrochemical processes. These previous studies, however, were limited to constant-potential measurements and slow-scan voltammetry. The work described in this paper utilizes microfabrication processes to produce devices that enable multiple fast-scan cyclic voltammetry (FSCV) waveforms to be applied to different electrodes on a single substrate. This enabled the simultaneous, decoupled detection of dopamine and oxygen. In this paper we describe the fabrication process of these arrays and show that pyrolyzed photoresist electrodes possess surface chemistry and electrochemical properties comparable to PAN-type, T-650, carbon fiber microelectrodes using background-subtracted FSCV. The functionality of the array is discussed in terms of the degree of cross talk in response to flow injections of physiologically relevant concentrations of dopamine and oxygen. Finally, other applications of pyrolyzed photoresist microelectrode arrays are shown, including spatially resolved detection of analytes and combining FSCV with amperometry for the detection of dopamine.
Biosensors and Bioelectronics | 2010
Matthew K. Zachek; Pavel Takmakov; Jinwoo Park; R. Mark Wightman; Gregory S. McCarty
When coupled with a microelectrode, background-subtracted fast scan cyclic voltammetry (FSCV) allows fast, sensitive and selective determination of analytes within a small spatial location. For the past 30 years experiments using this technique have been largely confined to recordings at a single microelectrode. Arrays with closely separated microelectrodes would allow researchers to gain more informative data as well as probe regions in close spatial proximity. This work presents one of the first FSCV microelectrode arrays (MEA) implemented in vivo with the ability to sample from different regions in close spatial proximity (equidistant within 1mm). The array is manufactured from fused silica capillaries and a microfabricated electrode spacer. The functionality of the array is assessed by simultaneously monitoring electrically stimulated dopamine (DA) release in the striatum of anesthetized rat. As expected, heterogeneous dopamine release was simultaneously observed. Additionally, the pharmacological effect of raclopride (D(2) receptor antagonist) and cocaine (monoamine uptake blocker) on the heterogeneity of DA release, in spatially different brain regions was shown to alter neurotransmitter release at all four electrode sites.
Analyst | 2010
Matthew K. Zachek; Jinwoo Park; Pavel Takmakov; R. Mark Wightman; Gregory S. McCarty
Fast scan cyclic voltammetry (FSCV) has been used previously to detect neurotransmitter release and reuptake in vivo. An advantage that FSCV has over other electrochemical techniques is its ability to distinguish neurotransmitters of interest (i.e. monoamines) from their metabolites using their respective characteristic cyclic voltammograms. While much has been learned with this technique, it has generally only been used in a single working electrode arrangement. Additionally, traditional electrode fabrication techniques tend to be difficult and somewhat irreproducible. Described in this report is a fabrication method for a FSCV compatible microelectrode array (FSCV-MEA) that is capable of functioning in vivo. The microfabrication techniques employed here allow for better reproducibility than traditional fabrication methods of carbon fiber microelectrodes, and enable batch fabrication of electrode arrays. The reproducibility and electrochemical qualities of the probes were assessed along with crosstalk in vitro. Heterogeneous release of electrically evoked dopamine was observed in real-time in the striatum of an anesthetized rat using the FSCV-MEA. The heterogeneous effects of pharmacology on the striatum were also observed and shown to be consistent across multiple animals.
Langmuir | 2010
James G. Roberts; Benjamin Moody; Gregory S. McCarty; Leslie A. Sombers
The in vivo use of carbon-fiber microelectrodes for neurochemical investigation has proven to be selective and sensitive when coupled with background-subtracted fast-scan cyclic voltammetry (FSCV). Various electrochemical pretreatments have been established to enhance the sensitivity of these sensors; however, the fundamental chemical mechanisms underlying these enhancement strategies remain poorly understood. We have investigated an electrochemical pretreatment in which an extended triangular waveform from -0.5 to 1.8 V is applied to the electrode prior to the voltammetric detection of dopamine using a more standard waveform ranging from -0.4 to 1.3 V. This pretreatment enhances the electron-transfer kinetics and significantly improves sensitivity. To gain insight into the chemical mechanism, the electrodes were studied using common analytical techniques. Contact atomic force microscopy (AFM) was used to demonstrate that the surface roughness was not altered on the nanoscale by electrochemical pretreatment. Raman spectroscopy was utilized to investigate oxide functionalities on the carbon surface and confirmed that carbonyl and hydroxyl functional groups were increased by electrochemical conditioning. Spectra collected after the selective chemical modification of these groups implicate the hydroxyl functionality, rather than the carbonyl, as the major contributor to the enhanced electrochemical signal. Finally, we have demonstrated that this electrochemical pretreatment can be used to create carbon microdisc electrodes with sensitivities comparable to those associated with larger, conventionally treated cylindrical carbon fiber microelectrodes.
Analytical Chemistry | 2013
James G. Roberts; J. Vincent Toups; Eyob Eyualem; Gregory S. McCarty; Leslie A. Sombers
Technological advances have allowed background-subtracted fast-scan cyclic voltammetry to emerge as a powerful tool for monitoring molecular fluctuations in living brain tissue; however, there has been little progress to date in advancing electrode calibration procedures. Variability in the performance of these handmade electrodes renders calibration necessary for accurate quantification; however, experimental protocol makes standard postcalibration difficult or in some cases impossible. We have developed a model that utilizes information contained in the background charging current to predict electrode sensitivity to dopamine, ascorbic acid, hydrogen peroxide, and pH shifts at any point in an electrochemical experiment. Analysis determined a high correlation between predicted sensitivity and values obtained using the traditional postcalibration method, across all analytes. To validate this approach in vivo, calibration factors obtained with this model at electrodes in brain tissue were compared to values obtained at these electrodes using a traditional ex vivo calibration. Both demonstrated equal power of predictability for dopamine concentrations. This advance enables in situ electrode calibration, allowing researchers to track changes in electrode sensitivity over time and eliminating the need to generalize calibration factors between electrodes or across multiple days in an experiment.
Analytical Chemistry | 2015
Adam K. Dengler; R. Mark Wightman; Gregory S. McCarty
Fast-scan cyclic voltammetry (FSCV) has attracted attention for studying in vivo neurotransmission due to its subsecond temporal resolution, selectivity, and sensitivity. Traditional FSCV measurements use background subtraction to isolate changes in the local electrochemical environment, providing detailed information on fluctuations in the concentration of electroactive species. This background subtraction removes information about constant or slowly changing concentrations. However, determination of background concentrations is still important for understanding functioning brain tissue. For example, neural activity is known to consume oxygen and produce carbon dioxide which affects local levels of oxygen and pH. Here, we present a microfabricated microelectrode array which uses FSCV to detect the absolute levels of oxygen and pH in vitro. The sensor is a collector-generator electrode array with carbon microelectrodes spaced 5 μm apart. In this work, a periodic potential step is applied at the generator producing transient local changes in the electrochemical environment. The collector electrode continuously performs FSCV enabling these induced changes in concentration to be recorded with the sensitivity and selectivity of FSCV. A negative potential step applied at the generator produces a transient local pH shift at the collector. The generator-induced pH signal is detected using FSCV at the collector and correlated to absolute solution pH by postcalibration of the anodic peak position. In addition, in oxygenated solutions a negative potential step at the generator produces hydrogen peroxide by reducing oxygen. Hydrogen peroxide is detected with FSCV at the collector electrode, and the magnitude of the oxidative peak is proportional to absolute oxygen concentrations. Oxygen interference on the pH signal is minimal and can be accounted for with a postcalibration.