Gregory S. Yochum
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregory S. Yochum.
Cell | 2004
Soren Impey; Sean R. McCorkle; Hyunjoo Cha-Molstad; Jami Dwyer; Gregory S. Yochum; Jeremy M. Boss; Shannon McWeeney; John J. Dunn; Gail Mandel; Richard H. Goodman
The CREB transcription factor regulates differentiation, survival, and synaptic plasticity. The complement of CREB targets responsible for these responses has not been identified, however. We developed a novel approach to identify CREB targets, termed serial analysis of chromatin occupancy (SACO), by combining chromatin immunoprecipitation (ChIP) with a modification of SAGE. Using a SACO library derived from rat PC12 cells, we identified approximately 41,000 genomic signature tags (GSTs) that mapped to unique genomic loci. CREB binding was confirmed for all loci supported by multiple GSTs. Of the 6302 loci identified by multiple GSTs, 40% were within 2 kb of the transcriptional start of an annotated gene, 49% were within 1 kb of a CpG island, and 72% were within 1 kb of a putative cAMP-response element (CRE). A large fraction of the SACO loci delineated bidirectional promoters and novel antisense transcripts. This study represents the most comprehensive definition of transcription factor binding sites in a metazoan species.
Molecular Cell | 1998
Carol D. Laherty; Andrew N. Billin; Robert M. Lavinsky; Gregory S. Yochum; Angela C. Bush; Jian Min Sun; Tina Marie Mullen; James R. Davie; David W. Rose; Christopher K. Glass; Michael G. Rosenfeld; Donald E. Ayer; Robert N. Eisenman
The transcriptional corepressor mSin3 is found in a large multiprotein complex containing the histone deacetylases HDAC1 and HDAC2, in addition to at least five tightly associated polypeptides. We have cloned and characterized a novel component of the mSin3 complex, SAP30, SAP30 binds to mSin3 and is capable of mediating transcriptional repression via histone deacetylases. SAP30 also binds the N-CoR corepressor and is required for N-CoR-mediated repression by antagonist-bound estrogen receptor and the homeodomain protein Rpx, as well as N-CoR suppression of transactivation by the POU domain protein Pit-1. However, SAP30 is not required for N-CoR-mediated repression by unliganded retinoic acid receptor or thyroid hormone receptor, suggesting that SAP30 is involved in the functional recruitment of the mSin3-histone deacetylase complex to a specific subset of N-CoR corepressor complexes.
The Journal of Neuroscience | 2007
Stefanie J. Otto; Sean R. McCorkle; John Hover; Cecilia Conaco; Jong Jin Han; Soren Impey; Gregory S. Yochum; John J. Dunn; Richard H. Goodman; Gail Mandel
The repressor element 1 (RE1) silencing transcription factor (REST) helps preserve the identity of nervous tissue by silencing neuronal genes in non-neural tissues. Moreover, in an epithelial model of tumorigenesis, loss of REST function is associated with loss of adhesion, suggesting the aberrant expression of REST-controlled genes encoding this property. To date, no adhesion molecules under REST control have been identified. Here, we used serial analysis of chromatin occupancy to perform genome-wide identification of REST-occupied target sequences (RE1 sites) in a kidney cell line. We discovered novel REST-binding motifs and found that the number of RE1 sites far exceeded previous estimates. A large family of targets encoding adhesion proteins was identified, as were genes encoding signature proteins of neuroendocrine tumors. Unexpectedly, genes considered exclusively non-neuronal also contained an RE1 motif and were expressed in neurons. This supports the model that REST binding is a critical determinant of neuronal phenotype.
Journal of Biological Chemistry | 2012
Wesley M. Konsavage; Sydney L. Kyler; Sherri A. Rennoll; Ge Jin; Gregory S. Yochum
Background: It is unclear how YAP gene expression is controlled in colorectal cancer (CRC) cells. Results: β-Catenin/TCF4 complexes directly regulate YAP gene expression through a novel DNA enhancer element. Conclusion: YAP is a direct Wnt/β-catenin target gene, and its expression is required for CRC cell growth. Significance: Aberrant Wnt/β-catenin signaling may account for oncogenic YAP expression in intestinal cells. Mutations in the Wnt/β-catenin pathway occur in most colorectal cancers (CRCs), and these mutations lead to increased nuclear accumulation of the β-catenin transcriptional co-activator. In the nucleus, β-catenin associates with TCF/LEF sequence specific transcription factors to activate target gene expression. The Hippo pathway restricts cellular growth by preventing nuclear accumulation of the Yes-associated protein (YAP) transcriptional co-activator. YAP expression is elevated in CRCs suggesting that, like Wnt/β-catenin signaling, the Hippo pathway may contribute to colorectal carcinogenesis. Regulation of YAP at the post-translational level has been well studied but the transcription factors that control YAP gene expression are unknown. Here we demonstrate that β-catenin/TCF4 complexes bind a DNA enhancer element within the first intron of the YAP gene to drive YAP expression in CRC cells. As such, reducing β-catenin expression in CRC cells using shRNAs leads to decreased YAP mRNA and protein levels. YAP is abundantly expressed in the cytoplasm and nuclei of several established human colon cancer cell lines and this localization pattern is insensitive to plating density. Finally, we show that YAP expression is elevated in the majority of a panel of primary human colorectal tumors compared with its expression in uninvolved colonic mucosa, and that YAP and β-catenin localize to the nuclear compartment of tumor cells. Together, these results implicate YAP as an oncogene whose expression is driven by aberrant Wnt/β-catenin signaling in human CRC cells.
Nucleic Acids Research | 2010
Daniel Bottomly; Sydney L. Kyler; Shannon McWeeney; Gregory S. Yochum
Deregulation of the Wnt/β-catenin signaling pathway is a hallmark of colon cancer. Mutations in the adenomatous polyposis coli (APC) gene occur in the vast majority of colorectal cancers and are an initiating event in cellular transformation. Cells harboring mutant APC contain elevated levels of the β-catenin transcription coactivator in the nucleus which leads to abnormal expression of genes controlled by β-catenin/T-cell factor 4 (TCF4) complexes. Here, we use chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-Seq) to identify β-catenin binding regions in HCT116 human colon cancer cells. We localized 2168 β-catenin enriched regions using a concordance approach for integrating the output from multiple peak alignment algorithms. Motif discovery algorithms found a core TCF4 motif (T/A–T/A–C–A–A–A–G), an extended TCF4 motif (A/T/G–C/G–T/A–T/A–C–A–A–A–G) and an AP-1 motif (T–G–A–C/T–T–C–A) to be significantly represented in β-catenin enriched regions. Furthermore, 417 regions contained both TCF4 and AP-1 motifs. Genes associated with TCF4 and AP-1 motifs bound β-catenin, TCF4 and c-Jun in vivo and were activated by Wnt signaling and serum growth factors. Our work provides evidence that Wnt/β-catenin and mitogen signaling pathways intersect directly to regulate a defined set of target genes.
Cell | 2000
Kurt Brubaker; Shaun M. Cowley; Kai Huang; Lenora Loo; Gregory S. Yochum; Donald E. Ayer; Robert N. Eisenman; Ishwar Radhakrishnan
Gene-specific targeting of the Sin3 corepressor complex by DNA-bound repressors is an important mechanism of gene silencing in eukaryotes. The Sin3 corepressor specifically associates with a diverse group of transcriptional repressors, including members of the Mad family, that play crucial roles in development. The NMR structure of the complex formed by the PAH2 domain of mammalian Sin3A with the transrepression domain (SID) of human Mad1 reveals that both domains undergo mutual folding transitions upon complex formation generating an unusual left-handed four-helix bundle structure and an amphipathic alpha helix, respectively. The SID helix is wedged within a deep hydrophobic pocket defined by two PAH2 helices. Structure-function analyses of the Mad-Sin3 complex provide a basis for understanding the underlying mechanism(s) that lead to gene silencing.
Blood | 2010
Shannon McWeeney; Lucy C. Pemberton; Marc Loriaux; Kristina Vartanian; Stephanie G. Willis; Gregory S. Yochum; Beth Wilmot; Yaron Turpaz; Raji Pillai; Brian J. Druker; Jennifer L. Snead; Mary MacPartlin; Stephen G. O'Brien; Junia V. Melo; Thoralf Lange; Christina A. Harrington; Michael W. Deininger
In chronic-phase chronic myeloid leukemia (CML) patients, the lack of a major cytogenetic response (< 36% Ph(+) metaphases) to imatinib within 12 months indicates failure and mandates a change of therapy. To identify biomarkers predictive of imatinib failure, we performed gene expression array profiling of CD34(+) cells from 2 independent cohorts of imatinib-naive chronic-phase CML patients. The learning set consisted of retrospectively selected patients with a complete cytogenetic response or more than 65% Ph(+) metaphases within 12 months of imatinib therapy. Based on analysis of variance P less than .1 and fold difference 1.5 or more, we identified 885 probe sets with differential expression between responders and nonresponders, from which we extracted a 75-probe set minimal signature (classifier) that separated the 2 groups. On application to a prospectively accrued validation set, the classifier correctly predicted 88% of responders and 83% of nonresponders. Bioinformatics analysis and comparison with published studies revealed overlap of classifier genes with CML progression signatures and implicated beta-catenin in their regulation, suggesting that chronic-phase CML patients destined to fail imatinib have more advanced disease than evident by morphologic criteria. Our classifier may allow directing more aggressive therapy upfront to the patients most likely to benefit while sparing good-risk patients from unnecessary toxicity.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Gregory S. Yochum; Shannon McWeeney; Veena Rajaraman; Ryan Cleland; Sandra T. Peters; Richard H. Goodman
Most instances of colorectal cancer are due to abnormalities in the Wnt signaling pathway, resulting in nuclear accumulation of β-catenin. β-Catenin activates transcription of target genes primarily by associating with the T cell factor/lymphoid enhancer-binding factor (TCF/Lef) family of transcription factors. In this report, we use serial analysis of chromatin occupancy (SACO) to identify 412 high-confidence β-catenin targets in HCT116 colorectal carcinoma cells. Of these targets, 84% contained a consensus TCF motif and were occupied by TCF4 in vivo. Examination of the flanking 5-bp residues in each consensus revealed motif-specific enrichment at neighboring sites. β-Catenin binding was localized to the 5′ promoters, internal regions, and 3′ UTRs of protein-coding genes. Furthermore, 15 components of the canonical Wnt pathway were identified as β-catenin target genes, suggesting that feed-forward and feedback mechanisms exist to modulate the Wnt signal in colon cancer cells.
Molecular and Cellular Biology | 2008
Gregory S. Yochum; Ryan Cleland; Richard H. Goodman
ABSTRACT Mutations in components of the Wnt signaling pathway initiate colorectal carcinogenesis by deregulating the β-catenin transcriptional coactivator. β-Catenin activation of one target in particular, the c-Myc proto-oncogene, is required for colon cancer pathogenesis. β-Catenin is known to regulate c-Myc expression via sequences upstream of the transcription start site. Here, we report that a more robust β-catenin binding region localizes 1.4 kb downstream from the c-Myc transcriptional stop site. This site was discovered using a genome-wide method for identifying transcription factor binding sites termed serial analysis of chromatin occupancy. Chromatin immunoprecipitation-scanning assays demonstrate that the 5′ enhancer and the 3′ binding element are the only β-catenin and TCF4 binding regions across the c-Myc locus. When placed downstream of a simian virus 40-driven promoter-luciferase construct, the 3′ element activated luciferase transcription when introduced into HCT116 cells. c-Myc transcription is negligible in quiescent HCT116 cells but is induced when cells reenter the cell cycle after the addition of mitogens. Using these cells, we found that β-catenin and TCF4 occupancy at the 3′ enhancer precede occupancy at the 5′ enhancer. Association of c-Jun, β-catenin, and TCF4 specifically with the downstream enhancer underlies mitogen stimulation of c-Myc transcription. Our findings indicate that a downstream enhancer element provides the principal regulation of c-Myc expression.
Molecular and Cellular Biology | 2001
Gregory S. Yochum; Donald E. Ayer
ABSTRACT The mSin3A-histone deacetylase corepressor is a multiprotein complex that is recruited by DNA binding transcriptional repressors. Sin3 has four paired amphipathic alpha helices (PAH1 to -4) that are protein-protein interaction motifs and is the scaffold upon which the complex assembles. We identified a novel mSin3A-interacting protein that has two plant homeodomain (PHD) zinc fingers we term Pf1, for PHD factor one. Pf1 associates with mSin3A in vivo and recruits the mSin3A complex to repress transcription when fused to the DNA binding domain of Gal4. Pf1 interacts with Sin3 through two independent Sin3 interaction domains (SIDs), Pf1SID1 and Pf1SID2. Pf1SID1 binds PAH2, while Pf1SID2 binds PAH1. Pf1SID1 has sequence and structural similarity to the well-characterized 13-amino-acid SID of the Mad bHLHZip repressor. Pf1SID2 does not have sequence similarity with either Mad SID or Pf1SID1 and therefore represents a novel Sin3 binding domain. Mutations in a minimal fragment of Pf1 that encompasses Pf1SID1 inhibited mSin3A binding yet only slightly impaired repression when targeted to DNA, implying that Pf1 might interact with other corepressors. We show that Pf1 interacts with a mammalian homolog of the Drosophila Groucho corepressor, transducin-like enhancer (TLE). Pf1 binds TLE in an mSin3A-independent manner and recruits functional TLE complexes to repress transcription. These findings suggest that Pf1 may serve to bridge two global transcription networks, mSin3A and TLE.