Gregory Shaner
Purdue University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregory Shaner.
Plant Disease | 1996
Guihua Bai; Gregory Shaner
Understanding variation in pathogen virulence and cultivar resistance is important for development of effective strategies for breeding wheat cultivars resistant to scab. Six isolates of Fusarium graminearum from China and the United States were compared for variation in cultural characteristics and virulence on nine wheat cultivars with different degrees of resistance to scab. The isolates varied in their cultural characteristics and ability to cause scab, but there was no consistent specificity of cultivar resistance or pathogen virulence. Therefore, a mixture of local isolates is an appropriate inoculum to screen for scab resistance. Subculturing the fungus on potato dextrose agar for eight generations did not reduce virulence. In the greenhouse, eight cultivars were tested five times over 3 years by inoculating one central floret in a spike with an Indiana isolate of the fungus. Cultivars Ning 7840, Sumai 49, Fu 5114, and Sumai 3 were consistently resistant. The fungus spread from the inoculated spikelet to noninoculated spikelets of resistant cultivars in less than 20% of the plants, and spread was not evident until 12 days after inoculation. All plants of susceptible cultivar Clark showed spread of infection, and symptoms appeared on noninoculated spikelets by 8 days after inoculation. Sudden blight on the top part of the spike may be an important characteristic of highly susceptible cultivars. Measurement of spread of scab within a spike is a stable and reliable estimate of cultivar resistance.
Phytopathology | 1999
Guihua Bai; Frederic L. Kolb; Gregory Shaner; Leslie L. Domier
ABSTRACT Scab is a destructive disease of wheat. To accelerate development of scab-resistant wheat cultivars, molecular markers linked to scab resistance genes have been identified by using recombinant inbred lines (RILs) derived by single-seed descent from a cross between the resistant wheat cultivar Ning 7840 (resistant to spread of scab within the spike) and the susceptible cultivar Clark. In the greenhouse, F(5), F(6), F(7), and F(10) families were evaluated for resistance to spread of scab within a spike by injecting about 1,000 conidiospores of Fusarium graminearum into a central spikelet. Inoculated plants were kept in moist chambers for 3 days to promote initial infection and then transferred to greenhouse benches. Scab symptoms were evaluated four times (3, 9, 15, and 21 days after inoculation). The frequency distribution of scab severity indicated that resistance to spread of scab within a spike was controlled by a few major genes. DNA was isolated from both parents and F(9) plants of the 133 RILs. A total of 300 combinations of amplified fragment length polymorphism (AFLP) primers were screened for polymorphisms using bulked segregant analysis. Twenty pairs of primers revealed at least one polymorphic band between the two contrasting bulks. The segregation of each of these bands was evaluated in the 133 RILs. Eleven AFLP markers showed significant association with scab resistance, and an individual marker explained up to 53% of the total variation (R(2)). The markers with high R(2) values mapped to a single linkage group. By interval analysis, one major quantitative trait locus for scab resistance explaining up to 60% of the genetic variation for scab resistance was identified. Some of the AFLP markers may be useful in marker-assisted breeding to improve resistance to scab in wheat.
Theoretical and Applied Genetics | 2000
Guihua Bai; Gregory Shaner; H. W. Ohm
Abstract To study the inheritance of resistance in wheat to Fusarium graminearum, six resistant cultivars from China were crossed to two susceptible cultivars. The parents and their progenies were evaluated in the greenhouse for resistance to the spread of scab within a spike. A central floret was inoculated by injecting a droplet of inoculum at the time of anthesis. Inoculated plants were kept in a moist chamber for three subsequent nights. The proportion of scabbed spikelets was recorded six-times from 3-days to 21-days after inoculation, and the area under the disease progress curve (AUDPC) was calculated from these proportions. One to three genes, depending on the cultivar, conditioned resistance to scab as reflected by the AUDPC. A simple additive-dominance effect model fitted the segregation data for 8 of the 11 crosses. Dominance and epistatic effects were significant in a few crosses. These effects increased resistance in some crosses but decreased resistance in others. However, relative to additive effects, dominant and epistatic effects accounted for only a small portion of the genetic effects in the populations evaluated. The importance of additive effects means that it should be possible to accumulate different genes to enhance resistance to scab in wheat.
Theoretical and Applied Genetics | 2005
Jun Yang; Guihua Bai; Gregory Shaner
Fusarium head blight (FHB) is one of the most destructive diseases in wheat. This study was to identify new quantitative trait loci (QTL) for FHB resistance and the molecular markers closely linked to the QTL in wheat cultivar Chokwang. The primers of 612 simple sequence repeats (SSRs) and 12 target-region-amplified polymorphism (TRAP) marker were analyzed between resistant (Chokwang) and susceptible (Clark) parents. One hundred and seventy-two polymorphic markers were used to screen a population of 79 recombinant inbred lines (RILs) derived from the cross of Chokwang and Clark. One major QTL, Qfhb.ksu-5DL1, was identified on chromosome 5DL. The SSR marker Xbarc 239 was mapped in the QTL region, and also physically located to the bin of 5DL1-0.60-0.74 by using Chinese Spring deletion lines. Another QTL Qfhb.ksu-4BL1was linked to SSR Xbarc 1096 and tentatively mapped on 4BL. A QTL on 3BS, Qfhb.ksu-3BS1, was also detected with marginal significance in this population. Different marker alleles for these QTL were detected between Chokwang and Sumai 3 and its derivatives. These results suggested that Chokwang contains new QTL for FHB resistance that are different from those in Sumai 3. Pyramiding resistance QTL from various sources may enhance FHB resistance in wheat cultivars.
Phytopathology | 2011
P. A. Paul; L. V. Madden; Carl A. Bradley; A. E. Robertson; Gary P. Munkvold; Gregory Shaner; Kiersten A. Wise; D. K. Malvick; Tom W. Allen; A. Grybauskas; Paul C. Vincelli; Paul D. Esker
The use of foliar fungicides on field corn has increased greatly over the past 5 years in the United States in an attempt to increase yields, despite limited evidence that use of the fungicides is consistently profitable. To assess the value of using fungicides in grain corn production, random-effects meta-analyses were performed on results from foliar fungicide experiments conducted during 2002 to 2009 in 14 states across the United States to determine the mean yield response to the fungicides azoxystrobin, pyraclostrobin, propiconazole + trifloxystrobin, and propiconazole + azoxystrobin. For all fungicides, the yield difference between treated and nontreated plots was highly variable among studies. All four fungicides resulted in a significant mean yield increase relative to the nontreated plots (P < 0.05). Mean yield difference was highest for propiconazole + trifloxystrobin (390 kg/ha), followed by propiconazole + azoxystrobin (331 kg/ha) and pyraclostrobin (256 kg/ha), and lowest for azoxystrobin (230 kg/ha). Baseline yield (mean yield in the nontreated plots) had a significant effect on yield for propiconazole + azoxystrobin (P < 0.05), whereas baseline foliar disease severity (mean severity in the nontreated plots) significantly affected the yield response to pyraclostrobin, propiconazole + trifloxystrobin, and propiconazole + azoxystrobin but not to azoxystrobin. Mean yield difference was generally higher in the lowest yield and higher disease severity categories than in the highest yield and lower disease categories. The probability of failing to recover the fungicide application cost (p(loss)) also was estimated for a range of grain corn prices and application costs. At the 10-year average corn grain price of
Theoretical and Applied Genetics | 2003
Peiguo Guo; Guihua Bai; Gregory Shaner
0.12/kg (
Theoretical and Applied Genetics | 2005
Xiangyang Xu; Guihua Bai; Brett F. Carver; Gregory Shaner; R. M. Hunger
2.97/bushel) and application costs of
Theoretical and Applied Genetics | 1999
Steven A. Fennimore; W. E. Nyquist; Gregory Shaner; R. W. Doerge; Michael E. Foley
40 to 95/ha, p(loss) for disease severity <5% was 0.55 to 0.98 for pyraclostrobin, 0.62 to 0.93 for propiconazole + trifloxystrobin, 0.58 to 0.89 for propiconazole + azoxystrobin, and 0.91 to 0.99 for azoxystrobin. When disease severity was >5%, the corresponding probabilities were 0.36 to 95, 0.25 to 0.69, 0.25 to 0.64, and 0.37 to 0.98 for the four fungicides. In conclusion, the high p(loss) values found in most scenarios suggest that the use of these foliar fungicides is unlikely to be profitable when foliar disease severity is low and yield expectation is high.
Phytopathology | 1997
Jeffrey S. Lehman; Gregory Shaner
Abstract.Large-scale field screening for Fusarium head blight (FHB) resistance in wheat is difficult because environmental factors strongly influences the expression of resistance genes. Marker-assisted selection (MAS) may provide a powerful alternative. Conversion of amplified fragment length polymorphism (AFLP) markers into sequence-tagged site (STS) markers can generate breeder-friendly markers for MAS. In a previous study, one major quantitative trait locus (QTL) on chromosome 3BS was identified by using EcoRI-AFLP and a recombinant inbred population derived from the cross Ning 7840/Clark. Further mapping with PstI-AFLPs identified five markers that were significantly associated with the QTL. Three of them individually explained 38% to 50% of the phenotypic variation for FHB resistance. Two of them (pAGT/mCTG57, pACT/mCTG136) were linked to the QTL in coupling, and another (pAG/mCAA244) was linked to the QTL in repulsion. Successful conversion of one AFLP marker (pAG/mCAA244) yielded a co-dominant STS marker that explains about 50% of the phenotypic variation for FHB resistance in the population. The STS was validated in 14 other cultivars and is the first STS marker for a FHB resistance QTL converted from an AFLP marker.
Euphytica | 2006
Xiangyang Xu; Guihua Bai; Brett F. Carver; Gregory Shaner
Slow rusting is considered a crucial component of durable resistance to wheat leaf rust caused by Puccinia triticina and is often expressed in the form of a prolonged latent period. Selection for a longer latent period is considered an effective approach to developing wheat cultivars with improved durable resistance to leaf rust. A recombinant inbred line (RIL) population derived from CI 13227 (long latent period) × Suwon 92 (short latent period) was phenotyped for latent period in two greenhouse experiments in separate years, and amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers were analyzed in the same population. Among the RILs, the frequency distribution for latent period was continuous, and latent period was highly correlated between years (r=0.94, P<0.0001). A quantitative trait locus (QTL) prolonging the latent period of P. triticina, designated as QLrlp.osu-2DS, explained 42.8% and 54.5% of the phenotypic and genetic variance in the two experiments, respectively. QLrlp.osu-2DS was mapped on the distal region of chromosome 2DS. Two other QTLs for latent period, QLrlp.osu-2B and QLrlp.osu-7BL, were localized on chromosome 2B and the long arm of chromosome 7B, respectively. Multiple regression analysis showed that these three QTLs collectively explained 58.0% and 73.8% of the phenotypic and genetic variance over two experiments, respectively. Fourteen RILs that carried all three alleles for long latent period at three AFLP loci flanking QLrlp.osu-2DS, QLrlp.osu-2B, and QLrlp.osu-7BL had a mean latent period of 12.5 days, whereas 13 RILs without any long-latent-period alleles at the corresponding loci had a mean latent period of 7.4 days. Three SSR markers closely linked to these QTLs have potential to be applied in marker-assisted selection for prolonged latent period in wheat.