Gregory Soyez
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregory Soyez.
European Physical Journal C | 2012
Matteo Cacciari; Gavin P. Salam; Gregory Soyez
FastJet is a C++ package that provides a broad range of jet finding and analysis tools. It includes efficient native implementations of all widely used 2→1 sequential recombination jet algorithms for pp and e+e− collisions, as well as access to 3rd party jet algorithms through a plugin mechanism, including all currently used cone algorithms. FastJet also provides means to facilitate the manipulation of jet substructure, including some common boosted heavy-object taggers, as well as tools for estimation of pileup and underlying-event noise levels, determination of jet areas and subtraction or suppression of noise in jets.
Journal of High Energy Physics | 2008
Matteo Cacciari; Gavin P. Salam; Gregory Soyez
The area of a jet is a measure of its susceptibility to radiation, like pileup or underlying event (UE), that on average, in the jet’s neighbourhood, is uniform in rapidity and azimuth. In this article we establish a theoretical grounding for the discussion of jet areas, introducing two main definitions, passive and active areas, which respectively characterise the sensitivity to pointlike or diffuse pileup and UE radiation. We investigate the properties of jet areas for three standard jet algorithms, kt, Cambridge/Aachen and SISCone. Passive areas for single-particle jets are equal to the naive geometrical expectation πR 2 , but acquire an anomalous dimension at higher orders in the coupling, calculated here at leading order. The more physically relevant active areas differ from πR 2 even for single-particle jets, substantially so in the case of the cone algorithms like SISCone with a Tevatron Run-II split–merge procedure. We compare our results with direct measures of areas in parton-shower Monte Carlo simulations and find good agreement with the main features of the analytical predictions. We furthermore justify the use of jet areas to subtract the contamination from pileup.
European Physical Journal C | 2014
A. Altheimer; A. T. H. Arce; L. Asquith; J. Backus Mayes; E. Bergeaas Kuutmann; J. Berger; David Martin Bjergaard; L. Bryngemark; A. G. Buckley; J. M. Butterworth; M. Cacciari; M. Campanelli; T. Carli; Mikael Chala; B. Chapleau; C. Chen; John Paul Chou; Th. Cornelissen; David Curtin; Mrinal Dasgupta; A. R. Davison; F. de Almeida Dias; A. De Cosa; A. De Roeck; C. Debenedetti; C. Doglioni; Stephen D. Ellis; F. Fassi; J. Ferrando; S. Fleischmann
This report of the BOOST2012 workshop presents the results of four working groups that studied key aspects of jet substructure. We discuss the potential of first-principle QCD calculations to yield a precise description of the substructure of jets and study the accuracy of state-of-the-art Monte Carlo tools. Limitations of the experiments’ ability to resolve substructure are evaluated, with a focus on the impact of additional (pile-up) proton proton collisions on jet substructure performance in future LHC operating scenarios. A final section summarizes the lessons learnt from jet substructure analyses in searches for new physics in the production of boosted top quarks.
Archive | 2014
A. Altheimer; A. T. H. Arce; L. Asquith; J. Backus Mayes; Elin Bergeaas Kuutmann; J. Berger; David Martin Bjergaard; L. Bryngemark; A. G. Buckley; J. M. Butterworth; M. Cacciari; M. Campanelli; T. Carli; Mikael Chala; B. Chapleau; C. Chen; J. P. Chou; T. Cornelissen; David Curtin; Mrinal Dasgupta; A. R. Davison; F. de Almeida Dias; A. De Cosa; A. De Roeck; C. Debenedetti; C. Doglioni; Stephen D. Ellis; F. Fassi; J. Ferrando; S. Fleischmann
This report of the BOOST2012 workshop presents the results of four working groups that studied key aspects of jet substructure. We discuss the potential of first-principle QCD calculations to yield a precise description of the substructure of jets and study the accuracy of state-of-the-art Monte Carlo tools. Limitations of the experiments’ ability to resolve substructure are evaluated, with a focus on the impact of additional (pile-up) proton proton collisions on jet substructure performance in future LHC operating scenarios. A final section summarizes the lessons learnt from jet substructure analyses in searches for new physics in the production of boosted top quarks.
Physics Letters B | 2007
Gregory Soyez
The measurement of the proton structure function at HERA is often seen as a hint for the observation of saturation in high-energy QCD e.g. through the observation of geometric scaling. Accordingly, the dipole picture provides a powerful framework in which the QCD-based saturation models can be confronted to the data. In this Letter, we give a parametrisation of proton structure function which is directly constrained by the dynamics of QCD in its high-energy limit and fully includes the heavy quark effects. We obtain a good agreement with the available data. Furthermore, to the contrary of various models in the literature, we do not observe a significant decrease of the saturation momentum due to the heavy quark inclusion.
Journal of High Energy Physics | 2015
Mrinal Dasgupta; Frédéric A. Dreyer; Gavin P. Salam; Gregory Soyez
A bstractAs hadron collider physics continues to push the boundaries of precision, it becomes increasingly important to have methods for predicting properties of jets across a broad range of jet radius values R, and in particular for small R. In this paper we resum all leading logarithmic terms, αsn lnnR2, in the limit of small R, for a wide variety of observables. These include the inclusive jet spectrum, jet vetoes for Higgs physics and jet substructure tools. Some of the quantities that we consider are relevant also for heavy-ion collisions. Furthermore, we examine and comment on the underlying order-by-order convergence of the perturbative series for different R values. Our results indicate that small-R effects can be substantial. Phenomenological studies will appear in a forthcoming companion paper.
Physical Review Letters | 2013
Gregory Soyez; Gavin P. Salam; Jihun Kim; Souvik Dutta; Matteo Cacciari
Jets in high energy hadronic collisions often contain the fingerprints of the particles that produced them. Those fingerprints, and thus the nature of the particles that produced the jets, can be read off with the help of quantities known as jet shapes. Jet shapes are, however, severely affected by pileup, the accumulation in the detector of the residues of the many simultaneous collisions taking place in the Large Hadron Collider (LHC). We introduce a method to correct for pileup effects in jet shapes. Relative to earlier, limited approaches, the key advance resides in its full generality, achieved through a numerical determination, for each jet, of a given shapes susceptibility to pileup. The method rescues the possibility of using jet shapes in the high pileup environment of current and future LHC running, as we show with examples of quark-gluon discrimination and top tagging.
Physics Letters B | 2015
E. Iancu; J.D. Madrigal; Alfred H. Mueller; Gregory Soyez; D. N. Triantafyllopoulos
Abstract The higher-order perturbative corrections, beyond leading logarithmic accuracy, to the BFKL evolution in QCD at high energy are well known to suffer from a severe lack-of-convergence problem, due to radiative corrections enhanced by double collinear logarithms. Via an explicit calculation of Feynman graphs in light cone (time-ordered) perturbation theory, we show that the corrections enhanced by double logarithms (either energy-collinear, or double collinear) are associated with soft gluon emissions which are strictly ordered in lifetime. These corrections can be resummed to all orders by solving an evolution equation which is non-local in rapidity. This equation can be equivalently rewritten in local form, but with modified kernel and initial conditions, which resum double collinear logs to all orders. We extend this resummation to the next-to-leading order BFKL and BK equations. The first numerical studies of the collinearly-improved BK equation demonstrate the essential role of the resummation in both stabilizing and slowing down the evolution.
European Physical Journal C | 2011
Matteo Cacciari; Juan Rojo; Gavin P. Salam; Gregory Soyez
We examine the problem of jet reconstruction at heavy-ion colliders using jet-area-based background subtraction tools as provided by FastJet. We use Monte Carlo simulations with and without quenching to study the performance of several jet algorithms, including the option of filtering, under conditions corresponding to RHIC and LHC collisions. We find that most standard algorithms perform well, though the anti-kt and filtered Cambridge/Aachen algorithms have clear advantages in terms of the reconstructed pt offset and dispersion.
Physics Letters B | 2015
E. Iancu; J.D. Madrigal; Alfred H. Mueller; Gregory Soyez; D.N. Triantafyllopoulos
In a previous publication, we have established a collinearly-improved version of the Balitsky–Kovchegov (BK) equation, which resums to all orders the radiative corrections enhanced by large double transverse logarithms. Here, we study the relevance of this equation as a tool for phenomenology, by confronting it to the HERA data. To that aim, we first improve the perturbative accuracy of our resummation, by including two classes of single-logarithmic corrections: those generated by the first non-singular terms in the DGLAP splitting functions and those expressing the one-loop running of the QCD coupling. The equation thus obtained includes all the next-to-leading order corrections to the BK equation which are enhanced by (single or double) collinear logarithms. We then use numerical solutions to this equation to fit the HERA data for the electron–proton reduced cross-section at small Bjorken x. We obtain good quality fits for physically acceptable initial conditions. Our best fit, which shows a good stability up to virtualities as large as Q 2 = 400 GeV