Gregory Starr
University of Alabama
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregory Starr.
Ecological Monographs | 1999
A. M. Arft; Marilyn D. Walker; J. Gurevitch; Juha M. Alatalo; M. S. Bret-Harte; M. Dale; M. Diemer; F. Gugerli; Gregory H. R. Henry; M. H. Jones; Robert D. Hollister; Ingibjörg S. Jónsdóttir; Kari Laine; Esther Lévesque; G. M. Marion; Ulf Molau; P. Mølgaard; Urban Nordenhäll; V. Raszhivin; Clare H. Robinson; Gregory Starr; Anna Stenström; Mikael Stenström; Ørjan Totland; P. L. Turner; L. J. Walker; Patrick J. Webber; Jeffrey M. Welker; P. A. Wookey
The International Tundra Experiment (ITEX) is a collaborative, multisite experiment using a common temperature manipulation to examine variability in species response across climatic and geographic gradients of tundra ecosystems. ITEX was designed specifically to examine variability in arctic and alpine species response to increased temperature. We compiled from one to four years of experimental data from 13 different ITEX sites and used meta-analysis to analyze responses of plant phenology, growth, and reproduction to experimental warming. Results indicate that key phenological events such as leaf bud burst and flowering occurred earlier in warmed plots throughout the study period; however, there was little impact on growth cessation at the end of the season. Quantitative measures of vegetative growth were greatest in warmed plots in the early years of the experiment, whereas reproductive effort and success increased in later years. A shift away from vegetative growth and toward reproductive effort and success in the fourth treatment year suggests a shift from the initial response to a secondary response. The change in vegetative response may be due to depletion of stored plant reserves, whereas the lag in reproductive response may be due to the formation of flower buds one to several seasons prior to flowering. Both vegetative and reproductive responses varied among life-forms; herbaceous forms had stronger and more consistent vegetative growth responses than did woody forms. The greater responsiveness of the herbaceous forms may be attributed to their more flexible morphology and to their relatively greater proportion of stored plant reserves. Finally, warmer, low arctic sites produced the strongest growth responses, but colder sites produced a greater reproductive response. Greater resource investment in vegetative growth may be a conservative strategy in the Low Arctic, where there is more competition for light, nutrients, or water, and there may be little opportunity for successful germination or seedling development. In contrast, in the High Arctic, heavy investment in producing seed under a higher temperature scenario may provide an opportunity for species to colonize patches of unvegetated ground. The observed differential response to warming suggests that the primary forces driving the response vary across climatic zones, functional groups, and through time.
Journal of Geophysical Research | 2010
B. D. Amiro; Alan G. Barr; Jordan G. Barr; T.A. Black; Rosvel Bracho; Mathew Brown; Jiquan Chen; Kenneth L. Clark; Kenneth J. Davis; Ankur R. Desai; Sylvain Doré; Vic Engel; Jose D. Fuentes; Allen H. Goldstein; Michael L. Goulden; Thomas E. Kolb; Michael Lavigne; Beverly E. Law; Hank A. Margolis; Timothy A. Martin; J. H. McCaughey; Laurent Misson; M. Montes‐Helu; Asko Noormets; James T. Randerson; Gregory Starr; Jingfeng Xiao
Disturbances are important for renewal of North American forests. Here we summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America. The disturbances included stand-replacing fire (Alaska, Arizona, Manitoba, and Saskatchewan) and harvest (British Columbia, Florida, New Brunswick, Oregon, Quebec, Saskatchewan, and Wisconsin) events, insect infestations (gypsy moth, forest tent caterpillar, and mountain pine beetle), Hurricane Wilma, and silvicultural thinning (Arizona, California, and New Brunswick). Net ecosystem production (NEP) showed a carbon loss from all ecosystems following a stand-replacing disturbance, becoming a carbon sink by 20 years for all ecosystems and by 10 years for most. Maximum carbon losses following disturbance (g C m−2y−1) ranged from 1270 in Florida to 200 in boreal ecosystems. Similarly, for forests less than 100 years old, maximum uptake (g C m−2y−1) was 1180 in Florida mangroves and 210 in boreal ecosystems. More temperate forests had intermediate fluxes. Boreal ecosystems were relatively time invariant after 20 years, whereas western ecosystems tended to increase in carbon gain over time. This was driven mostly by gross photosynthetic production (GPP) because total ecosystem respiration (ER) and heterotrophic respiration were relatively invariant with age. GPP/ER was as low as 0.2 immediately following stand-replacing disturbance reaching a constant value of 1.2 after 20 years. NEP following insect defoliations and silvicultural thinning showed lesser changes than stand-replacing events, with decreases in the year of disturbance followed by rapid recovery. NEP decreased in a mangrove ecosystem following Hurricane Wilma because of a decrease in GPP and an increase in ER.
Ecological Monographs | 2007
Steven F. Oberbauer; Craig E. Tweedie; Jeff Welker; Jace T. Fahnestock; Greg H. R. Henry; Patrick J. Webber; Robert D. Hollister; Marilyn D. Walker; Andrea Kuchy; Elizabeth Elmore; Gregory Starr
Climate warming is expected to differentially affect CO2 exchange of the diverse ecosystems in the Arctic. Quantifying responses of CO2 exchange to warming in these ecosystems will require coordinated experimentation using standard temperature manipula- tions and measurements. Here, we used the International Tundra Experiment (ITEX) standard warming treatment to determine CO2 flux responses to growing-season warming for ecosystems spanning natural temperature and moisture ranges across the Arctic biome. We used the four North American Arctic ITEX sites (Toolik Lake, Atqasuk, and Barrow (USA) and Alexandra Fiord (Canada)) that span 108 of latitude. At each site, we investigated the CO2 responses to warming in both dry and wet or moist ecosystems. Net ecosystem CO2 exchange (NEE), ecosystem respiration (ER), and gross ecosystem photosynthesis (GEP) were assessed using chamber techniques conducted over 24-h periods sampled regularly throughout the summers of two years at all sites. At Toolik Lake, warming increased net CO2 losses in both moist and dry ecosystems. In contrast, at Atqasuk and Barrow, warming increased net CO2 uptake in wet ecosystems but increased losses from dry ecosystems. At Alexandra Fiord, warming improved net carbon uptake in the moist ecosystem in both years, but in the wet and dry ecosystems uptake increased in one year and decreased the other. Warming generally increased ER, with the largest increases in dry ecosystems. In wet ecosystems, high soil moisture limited increases in respiration relative to increases in photosynthesis. Warming generally increased GEP, with the notable exception of the Toolik Lake moist ecosystem, where warming unexpectedly decreased GEP .25%. Overall, the respiration response determined the effect of warming on ecosystem CO2 balance. Our results provide the first multiple-site comparison of arctic tundra CO2 flux responses to standard warming treatments across a large climate gradient. These results indicate that (1) dry tundra may be initially the most responsive ecosystems to climate warming by virtue of strong increases in ER, (2) moist and wet tundra responses are dampened by higher water tables and soil water contents, and (3) both GEP and ER are responsive to climate warming, but the magnitudes and directions are ecosystem-dependent.
Ecology | 2003
Gregory Starr; Steven F. Oberbauer
Vascular plants are generally assumed to have no photosynthetic activity under the snow because of the severity of the subnivean environment. In the arctic tundra, snow cover persists into the spring after air temperatures and light increase to levels suitable for photosynthesis of vascular plants in the absence of snow cover. We found significant photosynthetic activity in four arctic evergreen species under springtime snow. This activity was facilitated by favorable conditions in the subnivean environment, where CO2 concentrations are elevated, temperatures are often above freezing, and light levels are sufficient to drive photosynthesis. Diurnal changes in CO2 concentration under the snow and light responses of snow-covered ecosystem CO2 fluxes provide supporting evidence of carbon gain at the ecosystem level. This activity allows evergreens to rapidly increase photosynthesis upon snowmelt and reduces wintertime losses of carbon from arctic ecosystems. The loss of these species under predicted scenario...
Global Biogeochemical Cycles | 2011
Wenping Yuan; Yiqi Luo; Xianglan Li; Shuguang Liu; Guirui Yu; Tao Zhou; Michael Bahn; Andy Black; Ankur R. Desai; Alessandro Cescatti; Barbara Marcolla; C.M.J. Jacobs; Jiquan Chen; Mika Aurela; Christian Bernhofer; Bert Gielen; Gil Bohrer; David R. Cook; Danilo Dragoni; Allison L. Dunn; Damiano Gianelle; Thomas Grünwald; Andreas Ibrom; Monique Y. Leclerc; Anders Lindroth; Heping Liu; Luca Belelli Marchesini; Leonardo Montagnani; Gabriel Pita; Mirco Rodeghiero
Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models still use a global constant BR largely due to the lack of a functional description for BR. In this study, we redefined BR to be ecosystem respiration rate at the mean annual temperature. To test the validity of this concept, we conducted a synthesis analysis using 276 site-years of eddy covariance data, from 79 research sites located at latitudes ranging from similar to 3 degrees S to similar to 70 degrees N. Results showed that mean annual ER rate closely matches ER rate at mean annual temperature. Incorporation of site-specific BR into global ER model substantially improved simulated ER compared to an invariant BR at all sites. These results confirm that ER at the mean annual temperature can be considered as BR in empirical models. A strong correlation was found between the mean annual ER and mean annual gross primary production (GPP). Consequently, GPP, which is typically more accurately modeled, can be used to estimate BR. A light use efficiency GPP model (i.e., EC-LUE) was applied to estimate global GPP, BR and ER with input data from MERRA (Modern Era Retrospective-Analysis for Research and Applications) and MODIS (Moderate resolution Imaging Spectroradiometer). The global ER was 103 Pg C yr (-1), with the highest respiration rate over tropical forests and the lowest value in dry and high-latitude areas.
Journal of Geophysical Research | 1998
Steven F. Oberbauer; Gregory Starr; Eric W. Pop
The active season of tussock tundra was extended during two growing seasons (1995 and 1996) by snow removal in early season and prevention of snow accumulation in late season to test the effects of a longer growing season on tundra carbon exchange. Three treatments were established: extended season, extended season + soil warming, and controls. Soil warming was accomplished using cold-frame, resistance heating wire installed the year prior to the initiation of treatments. Diurnal courses of CO2 exchange were measured weekly using infrared gas analysis with enclosed chamber techniques. Methane fluxes were measured two to three times a season also using enclosure methods. In 1995, snowmelt occurred unusually early, and snow removal treatments increased the season only 9–10 days. In 1996 the early season was increased approximately 24 days. As expected, thaw depth, soil temperature, and plant growth were greater earlier in the extended season and extended season + soil heating plots. Methane fluxes in both seasons were low but tended to be higher in the extended season and soil heated plots. Net ecosystem CO2 fluxes were similar among treatments early in the season, with a tendency toward more positive fluxes (system loss) for the snow removal and wanned plots, possibly due to higher belowground respiration. During midseason, fluxes were similar among the treatments. Later in the season, fluxes of extended season and warmed plots tended to be lower (less carbon loss) than controls, especially in 1995. Totaled over the season, however, the fluxes of the three treatments did not statistically differ and represented losses to the atmosphere. Measurements of dark respiration in 1996 indicate that both respiration and uptake were increased on the extended season plots, resulting in similar net fluxes to controls.
Environmental Research Letters | 2016
Benjamin W. Abbott; Jeremy B. Jones; Edward A. G. Schuur; F. Stuart Chapin; William B. Bowden; M. Syndonia Bret-Harte; Howard E. Epstein; Mike D. Flannigan; Tamara K. Harms; Teresa N. Hollingsworth; Michelle C. Mack; A. David McGuire; Susan M. Natali; Adrian V. Rocha; Suzanne E. Tank; Merritt R. Turetsky; Jorien E. Vonk; Kimberly P. Wickland; George R. Aiken; Heather D. Alexander; Rainer M. W. Amon; Brian W. Benscoter; Yves Bergeron; Kevin Bishop; Olivier Blarquez; Ben Bond-Lamberty; Amy L. Breen; Ishi Buffam; Yihua Cai; Christopher Carcaillet
As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release w ...
Oecologia | 2000
Eric W. Pop; Steven F. Oberbauer; Gregory Starr
Abstract The factors controlling bud break in two arctic deciduous shrub species, Salix pulchra and Betula nana, were investigated using field observations and growth-chamber studies. A bud-break model was calibrated using a subset of the experimental observations and was used to predict bud break under current and potential future climate regimes. The two species responded similarly in terms of bud break timing and response to air temperature in both field and controlled environments. In the field, the timing of bud break was strongly influenced by air temperatures once snowmelt had occurred. Growth chamber studies showed that a period of chilling is required before buds break in response to warming. Model simulations indicate that under current conditions, the chilling requirement is easily met during winter and that even with substantial winter warming, chilling will be sufficient. In contrast, warm spring temperatures determine the timing of bud break. This limitation by spring temperatures means that in a warmer climate bud break will occur earlier than under current temperature regimes. Such changes in bud break timing of the deciduous shrubs will likely have important consequences for the relative abundance of shrubs in future communities and consequently ecosystem processes.
Ecological Monographs | 2012
Rosvel Bracho; Gregory Starr; Henry L. Gholz; Timothy A. Martin; Wendell P. Cropper; Henry W. Loescher
Planted pine forests (plantations) in the southeastern United States are an important component of the continents carbon balance. Forest carbon dynamics are affected by a range of factors including climatic variability. Multiyear droughts have affected the region in the past, and an increase in the frequency of drought events has been predicted. How this increased climatic variability will affect the capacity of the regions pine plantations to sequester carbon is not known. We used eddy covariance and biometric approaches to measure carbon dynamics over nine years in two slash pine plantations (Pinus elliottii var elliottii Englm) in north Florida, consisting of a newly planted and a mid-rotation stand. During this time, the region experienced two multiyear droughts (1999-2002 and 2006-2008), separated by a three-year wet period. Net ecosystem carbon accumulation measured using both approaches showed the same trends and magnitudes during plantation development. The newly planted site released 15.6 Mg C/ha during the first three years after planting, before becoming a carbon sink in year 4. Increases in carbon uptake during the early stages of stand development were driven by the aggrading leaf area index (LAI). After canopy closure, both sites were continuous carbon sinks with net carbon uptake (NEE) fluctuating between 4 and ; 8M g Cha � 1 � yr � 1 , depending on environmental conditions. Drought reduced NEE by ;25% through its negative effects on both LAI and radiation-use efficiency, which resulted in a larger impact on gross ecosystem carbon exchange than on ecosystem respiration. While results indicate that responses to drought involved complex interactions among water availability, LAI, and radiation-use efficiency, these ecosystems remain carbon sinks under current management strategies and climatic variability. Variation within locations is primarily due to major disturbances, such as logging in the current study and, to a much lesser extent, local environmental fluctuations. When data from this study are compared to flux data from a broad range of forests worldwide, these ecosystems fill a data gap in the warm-temperate zone and support a broad maximum NEE (for closed-canopy forests) between 88C and 208C mean annual temperature.
Arctic, Antarctic, and Alpine Research | 2008
Gregory Starr; Steven F. Oberbauer; Lorraine E. Ahlquist
ABSTRACT How the carbon balance of arctic ecosystems responds to climate warming will depend on the changes in carbon assimilation capacity of tundra plant species. Along with air and soil warming, one of the consequences of warming likely to be important for carbon assimilation of tundra plant species is an expected 40% increase in growing season length. We examined the effects of a lengthened growing season and soil warming on the photosynthetic capacity of seven tundra plant species from four growth forms that comprise >90% of the vascular cover of wet tussock tundra. Maximum photosynthetic capacity of these key species was relatively unchanged by the manipulation that significantly altered growing season length, active layer depth, and soil temperatures. Highest photosynthetic rates were found for the forb, Polygonum bistorta, and the lowest for dwarf evergreen shrubs. Seasonal patterns revealed that plants maintained relatively high light-saturated photosynthetic capacity (Amax) values throughout most of the growing season. Interannual variation was significant, but differences were small for most species. The study shows that tundra species operate within a relatively narrow range for maximum photosynthetic capacity with this maximum seldom being reached under ambient conditions. Thus, when evaluating the effects of climate change on tundra ecosystem carbon uptake, species composition and total photosynthetic leaf area should be considered first. These two factors will affect the system carbon exchange capacity during climate warming more so than species-level assimilation capacity.