Gregory Tullo
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregory Tullo.
Lancet Infectious Diseases | 2016
Chanaki Amaratunga; Pharath Lim; Seila Suon; Sokunthea Sreng; Sivanna Mao; Chantha Sopha; Baramey Sam; Dalin Dek; Vorleak Try; Roberto Amato; Daniel Blessborn; Lijiang Song; Gregory Tullo; Michael P. Fay; Jennifer M. Anderson; Joel Tarning; Rick M. Fairhurst
BACKGROUND Artemisinin resistance in Plasmodium falciparum threatens to reduce the efficacy of artemisinin combination therapies (ACTs), thus compromising global efforts to eliminate malaria. Recent treatment failures with dihydroartemisinin-piperaquine, the current first-line ACT in Cambodia, suggest that piperaquine resistance may be emerging in this country. We explored the relation between artemisinin resistance and dihydroartemisinin-piperaquine failures, and sought to confirm the presence of piperaquine-resistant P falciparum infections in Cambodia. METHODS In this prospective cohort study, we enrolled patients aged 2-65 years with uncomplicated P falciparum malaria in three Cambodian provinces: Pursat, Preah Vihear, and Ratanakiri. Participants were given standard 3-day courses of dihydroartemisinin-piperaquine. Peripheral blood parasite densities were measured until parasites cleared and then weekly to 63 days. The primary outcome was recrudescent P falciparum parasitaemia within 63 days. We measured piperaquine plasma concentrations at baseline, 7 days, and day of recrudescence. We assessed phenotypic and genotypic markers of drug resistance in parasite isolates. The study is registered with ClinicalTrials.gov, number NCT01736319. FINDINGS Between Sept 4, 2012, and Dec 31, 2013, we enrolled 241 participants. In Pursat, where artemisinin resistance is entrenched, 37 (46%) of 81 patients had parasite recrudescence. In Preah Vihear, where artemisinin resistance is emerging, ten (16%) of 63 patients had recrudescence and in Ratanakiri, where artemisinin resistance is rare, one (2%) of 60 patients did. Patients with recrudescent P falciparum infections were more likely to have detectable piperaquine plasma concentrations at baseline compared with non-recrudescent patients, but did not differ significantly in age, initial parasite density, or piperaquine plasma concentrations at 7 days. Recrudescent parasites had a higher prevalence of kelch13 mutations, higher piperaquine 50% inhibitory concentration (IC50) values, and lower mefloquine IC50 values; none had multiple pfmdr1 copies, a genetic marker of mefloquine resistance. INTERPRETATION Dihydroartemisinin-piperaquine failures are caused by both artemisinin and piperaquine resistance, and commonly occur in places where dihydroartemisinin-piperaquine has been used in the private sector. In Cambodia, artesunate plus mefloquine may be a viable option to treat dihydroartemisinin-piperaquine failures, and a more effective first-line ACT in areas where dihydroartemisinin-piperaquine failures are common. The use of single low-dose primaquine to eliminate circulating gametocytes is needed in areas where artemisinin and ACT resistance is prevalent. FUNDING National Institute of Allergy and Infectious Diseases.
PLOS ONE | 2013
Kazutoyo Miura; Bingbing Deng; Gregory Tullo; Ababacar Diouf; Samuel E. Moretz; Emily Locke; Merribeth J. Morin; Michael P. Fay; Carole A. Long
Vaccines that interrupt malaria transmission are of increasing interest and a robust functional assay to measure this activity would promote their development by providing a biologically relevant means of evaluating potential vaccine candidates. Therefore, we aimed to qualify the standard membrane-feeding assay (SMFA). The assay measures the transmission-blocking activity of antibodies by feeding cultured P. falciparum gametocytes to Anopheles mosquitoes in the presence of the test antibodies and measuring subsequent mosquito infection. The International Conference on Harmonisation (ICH) Harmonised Tripartite Guideline Q2(R1) details characteristics considered in assay validation. Of these characteristics, we decided to qualify the SMFA for Precision, Linearity, Range and Specificity. The transmission-blocking 4B7 monoclonal antibody was tested over 6 feeding experiments at several concentrations to determine four suitable concentrations that were tested in triplicate in the qualification experiments (3 additional feeds) to evaluate Precision, Linearity and Range. For Specificity, 4B7 was tested in the presence of normal mouse IgG. We determined intra- and inter-assay variability of % inhibition of mean oocyst intensity at each concentration of 4B7 (lower concentrations showed higher variability). We also showed that % inhibition was dependent on 4B7 concentration and the activity is specific to 4B7. Since obtaining empirical data is time-consuming, we generated a model using data from all 9 feeds and simulated the effects of different parameters on final readouts to improve the assay procedure and analytical methods for future studies. For example, we estimated the effect of number of mosquitoes dissected on variability of % inhibition, and simulated the relationship between % inhibition in oocyst intensity and % inhibition of prevalence of infected mosquitos at different mean oocysts in the control. SMFA is one of the few biological assays used in preclinical and early clinical development of transmission-blocking vaccines, and this study strongly supports its further development and application.
Infection and Immunity | 2013
Kazutoyo Miura; Eizo Takashima; Bingbing Deng; Gregory Tullo; Ababacar Diouf; Samuel E. Moretz; Daria Nikolaeva; Mahamadou Diakite; Rick M. Fairhurst; Michael P. Fay; Carole A. Long; Takafumi Tsuboi
ABSTRACT Recently, there has been a renewed interest in the development of transmission-blocking vaccines (TBV) against Plasmodium falciparum malaria. While several candidate TBVs have been reported, studies directly comparing them in functional assays are limited. To this end, recombinant proteins of TBV candidates Pfs25, Pfs230, and PfHAP2 were expressed in the wheat germ cell-free expression system. Outbred CD-1 mice were immunized twice with the antigens. Two weeks after the second immunization, IgG levels were measured by enzyme-linked immunosorbent assay (ELISA), and IgG functionality was assessed by the standard membrane-feeding assay (SMFA) using cultured P. falciparum NF54 gametocytes and Anopheles stephensi mosquitoes. All three recombinant proteins elicited similar levels of antigen-specific IgG judged by ELISA. When IgGs purified from pools of immune serum were tested at 0.75 mg/ml in the SMFA, all three IgGs showed 97 to 100% inhibition in oocyst intensity compared to control IgG. In two additional independent SMFA evaluations, anti-Pfs25, anti-Pfs230, and anti-PfHAP2 IgGs inhibited oocyst intensity in a dose-dependent manner. When all three data sets were analyzed, anti-Pfs25 antibody showed significantly higher inhibition than the other two antibodies (P < 0.001 for both), while there was no significant difference between the other two (P = 0.15). A proportion of plasma samples collected from adults living in an area of malaria endemicity in Mali recognized Pfs230 and PfHAP2. This is the first study showing that the HAP2 protein of P. falciparum can induce transmission-blocking antibody. The current study supports the possibility of using this system for a comparative study with multiple TBV candidates.
The Lancet Haematology | 2015
Tatiana M. Lopera-Mesa; Saibou Doumbia; Drissa Konaté; Jennifer M. Anderson; Mory Doumbouya; Abdoul Salam Keita; Seidina A. S. Diakite; Karim Traore; Michael Krause; Ababacar Diouf; Samuel E. Moretz; Gregory Tullo; Kazutoyo Miura; Wenjuan Gu; Michael P. Fay; Steve M. Taylor; Carole A. Long; Mahamadou Diakite; Rick M. Fairhurst
BACKGROUND Red blood cell variants protect African children from severe falciparum malaria. However, their individual and interactive effects on mild disease and parasite density, and their modification by age-dependent immunity, are poorly understood. In this study, we address these knowledge gaps in a prospective cohort study of malaria risk and Plasmodium falciparum densities in Malian children. METHODS The Kenieroba Innate Defense Study for Malaria (KIDS-Malaria) was a 4-year prospective cohort study of children aged 6 months to 17 years undertaken in Mali between 2008 and 2011. Red blood cell variants were haemoglobin S (HbS), haemoglobin C (HbC), α thalassaemia, ABO blood groups, and glucose-6-phosphate dehydrogenase (G6PD) deficiency encoded by the X-linked A- allele. The primary outcome was malaria incidence, measured as the number of uncomplicated or severe malaria episodes over time. The secondary outcome was parasite density at the time of a malaria episode. We modelled incidence rate ratios with quasi-Poisson regression and we analysed parasite densities using generalised estimating equations. This study is registered with ClinicalTrials.gov, number NCT00669084. FINDINGS Between May 1, 2008, and Dec 29, 2011, we enrolled 1586 children into the study. We successfully typed all five red blood cell variants for 1543 of these children, who therefore constituted the evaluable population and in whom we diagnosed 4091 malaria episodes over 2656 child-years of follow-up. In these 1543 children, red blood cell variants were common, and occurred at the following frequencies: sickle cell trait (HbAS) 220 (14%), HbC heterozygosity (HbAC) 103 (7%), α thalassaemia 438 (28%), type O blood group 621 (40%), and G6PD deficiency 72 (9%) in 767 boys and 158 (20%) in 776 girls. The overall incidence of malaria was 1.54 episodes per child-year of follow-up, ranging from 2.78 episodes per child-year at age 3 years to 0.40 episodes per child-year at age 17 years. The malaria incidence was lower in HbAS children than in HbAA children with normal haemoglobin (adjusted incidence rate ratio [aIRR] 0.66 [95% CI 0.59-0.75], p<0.0001) and lower in G6PD A-/A- homozygous girls than in G6PD A+/A+ girls (0.51 [0.29-0.90], p=0.020), but was higher in HbAC children than in HbAA children (1.15 [1.01-1.32], p=0.039). Parasite density was lower in HbAS children (median 10,550 parasites per μL [IQR 1350-26,250]) than in HbAA children (15,150 parasites per μL [4250-31,050]; p=0.0004). The HbAS-associated reductions in malaria risk and parasite density were greatest in early childhood. INTERPRETATION The individual and interactive effects of HbAS, HbAC, and G6PD A-/A- genotypes on malaria risk and parasite density define clinical and cellular correlates of protection. Further identification of the molecular mechanisms of these protective effects might uncover new targets for intervention. FUNDING Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health.
Vaccine | 2011
Kazutoyo Miura; Hong Zhou; Ababacar Diouf; Gregory Tullo; Samuel E. Moretz; Joan Aebig; Michael P. Fay; Louis H. Miller; Ogobara K. Doumbo; Issaka Sagara; Alassane Dicko; Carole A. Long; Ruth D. Ellis
Clinical development of malaria vaccines progresses from trials in malaria naïve adults to malaria exposed adults followed by malaria exposed children. It is not well known whether immune responses in non-target populations are predictive of those in target populations, particularly in African children. Therefore humoral responses in three different populations (U.S. adults, Malian adults and Malian children) were compared in this study. They were immunized with 80 μg of Apical Membrane Antigen 1 (AMA1)/alhydrogel on days 0 and 28. Sera were collected on days 0 and 42; antibody levels were determined by ELISA and the functionality of antibodies was evaluated by Growth Inhibition Assay. After immunization, there was no significant difference in antibody levels between the Malian children and the Malian adults, but U.S. adults showed lower antibody levels. Vaccination did not significantly change growth-inhibitory activity in Malian adults, but inhibition increased significantly in both U.S. adults and Malian children. Vaccine-induced inhibitory activity was reversed by pre-incubation with AMA1 protein, but pre-existing infection-induced inhibition was not. This study shows that humoral responses elicited by the AMA1 vaccine varied depending on the population, most likely reflecting different levels of previous malaria exposure. Thus predicting immune responses from non-target populations is not desirable.
Parasitology Research | 2012
Yanhui Zhang; Kazutoyo Miura; Jian Li; Gregory Tullo; Feng Zhu; Lingxian Hong; Tianlong Lin; Xin-Zhuan Su; Carole A. Long
Macrophage migration inhibitory factor (MIF) has been shown to be involved in the pathogenesis of severe malaria. Malaria parasites express an MIF homolog that may play a role in regulating host immune responses, and a recent study showed that overexpression of MIF reduced parasitemia in a mouse malaria model. Another recent study showed migration of monocytes to the spleen contributed to the control of blood stage infection. However, there are few papers describing the effect of MIF on monocyte recruitment/activation during the infection. We generated recombinant Plasmodium yoelii MIF (rPyMIF) and investigated its function on purified mouse CD11b+ cells in vitro and monocyte responses in vivo. The result shows that rPyMIF protein bound to mouse CD11b+ cells and inhibited their random migration in vitro. On the other hand, rPyMIF did not induce cytokine release from the cells directly or modulate lipopolysaccharide-induced cytokine release. Mice immunized with rPyMIF showed transient but significantly lower parasitemia than the control mice at day 3 after lethal Py17XL challenge. The total number of CD11b+ cells in the spleens was significantly higher in rPyMIF-immunized group. Further investigation revealed that there were significantly higher numbers of recruited and activated monocytes in the spleens of rPyMIF immunization group on day 3. These results indicate that PyMIF potentially modulates monocyte recruitment and activation during infection of P. yoelii erythrocytic stages.
Antimicrobial Agents and Chemotherapy | 2014
Chanaki Amaratunga; Sokunthea Sreng; Sivanna Mao; Gregory Tullo; Jennifer M. Anderson; Char Meng Chuor; Seila Suon; Rick M. Fairhurst
ABSTRACT Chloroquine (CQ) is used to treat Plasmodium vivax malaria in areas where CQ resistance has not been reported. The use of artemisinin (ART)-based combination therapies (ACTs) to treat CQ-sensitive P. vivax infections is effective and convenient but may promote the emergence and worsening of ART resistance in sympatric Plasmodium falciparum populations. Here, we show that CQ effectively treats P. vivax malaria in Pursat Province, western Cambodia, where ART-resistant P. falciparum is highly prevalent and spreading. (This study has been registered at ClinicalTrials.gov under registration no. NCT00663546.)
PLOS ONE | 2013
Kazutoyo Miura; Mahamadou Diakite; Ababacar Diouf; Saibou Doumbia; Drissa Konaté; Abdoul Salam Keita; Samuel E. Moretz; Gregory Tullo; Hong Zhou; Tatiana M. Lopera-Mesa; Jennifer M. Anderson; Rick M. Fairhurst; Carole A. Long
Heterozygous hemoglobin (Hb) AS (sickle-cell trait) and HbAC are hypothesized to protect against Plasmodium falciparum malaria in part by enhancing naturally-acquired immunity to this disease. To investigate this hypothesis, we compared antibody levels to four merozoite antigens from the P. falciparum 3D7 clone (apical membrane antigen 1, AMA1-3D7; merozoite surface protein 1, MSP1-3D7; 175 kDa erythrocyte-binding antigen, EBA175-3D7; and merozoite surface protein 2, MSP2-3D7) in a cohort of 103 HbAA, 73 HbAS and 30 HbAC children aged 3 to 11 years in a malaria-endemic area of Mali. In the 2009 transmission season we found that HbAS, but not HbAC, significantly reduced the risk of malaria compared to HbAA. IgG levels to MSP1 and MSP2 at the start of this transmission season inversely correlated with malaria incidence after adjusting for age and Hb type. However, HbAS children had significantly lower IgG levels to EBA175 and MSP2 compared to HbAA children. On the other hand, HbAC children had similar IgG levels to all four antigens. The parasite growth-inhibitory activity of purified IgG samples did not differ significantly by Hb type. Changes in antigen-specific IgG levels during the 2009 transmission and 2010 dry seasons also did not differ by Hb type, and none of these IgG levels dropped significantly during the dry season. These data suggest that sickle-cell trait does not reduce the risk of malaria by enhancing the acquisition of IgG responses to merozoite antigens.
PLOS ONE | 2013
Amir E. Zeituni; Kazutoyo Miura; Mahamadou Diakite; Saibou Doumbia; Samuel E. Moretz; Ababacar Diouf; Gregory Tullo; Tatiana M. Lopera-Mesa; Cameron D. Bess; Neida K. Mita-Mendoza; Jennifer M. Anderson; Rick M. Fairhurst; Carole A. Long
Background Naturally-acquired antibody responses to antigens on the surface of Plasmodium falciparum-infected red blood cells (iRBCs) have been implicated in antimalarial immunity. To profile the development of this immunity, we have been studying a cohort of Malian children living in an area with intense seasonal malaria transmission. Methodology/Principal Findings We collected plasma from a sub-cohort of 176 Malian children aged 3-11 years, before (May) and after (December) the 2009 transmission season. To measure the effect of hemoglobin (Hb) type on antibody responses, we enrolled age-matched HbAA, HbAS and HbAC children. To quantify antibody recognition of iRBCs, we designed a high-throughput flow cytometry assay to rapidly test numerous plasma samples against multiple parasite strains. We evaluated antibody reactivity of each plasma sample to 3 laboratory-adapted parasite lines (FCR3, D10, PC26) and 4 short-term-cultured parasite isolates (2 Malian and 2 Cambodian). 97% of children recognized ≥1 parasite strain and the proportion of IgG responders increased significantly during the transmission season for most parasite strains. Both strain-specific and strain-transcending IgG responses were detected, and varied by age, Hb type and parasite strain. In addition, the breadth of IgG responses to parasite strains increased with age in HbAA, but not in HbAS or HbAC, children. Conclusions/Significance Our assay detects both strain-specific and strain-transcending IgG responses to iRBCs. The magnitude and breadth of these responses varied not only by age, but also by Hb type and parasite strain used. These findings indicate that studies of acquired humoral immunity should account for Hb type and test large numbers of diverse parasite strains.
Infection and Immunity | 2015
Amy K. Bei; Ababacar Diouf; Kazutoyo Miura; Daniel B. Larremore; Ulf Ribacke; Gregory Tullo; Eli L. Moss; Daniel E. Neafsey; Rachel Daniels; Amir E. Zeituni; Iguosadolo Nosamiefan; Sarah K. Volkman; Ambroise D. Ahouidi; Daouda Ndiaye; Tandakha Ndiaye Dieye; Souleymane Mboup; Caroline O. Buckee; Carole A. Long; Dyann F. Wirth
ABSTRACT As the intensity of malaria transmission has declined, Plasmodium falciparum parasite populations have displayed decreased clonal diversity resulting from the emergence of many parasites with common genetic signatures (CGS). We have monitored such CGS parasite clusters from 2006 to 2013 in Thiès, Senegal, using the molecular barcode. The first, and one of the largest observed clusters of CGS parasites, was present in 24% of clinical isolates in 2008, declined to 3.4% of clinical isolates in 2009, and then disappeared. To begin to explore the relationship between the immune responses of the population and the emergence and decline of specific parasite genotypes, we have determined whether antibodies to CGS parasites correlate with their prevalence. We measured (i) antibodies capable of inhibiting parasite growth in culture and (ii) antibodies recognizing the surfaces of infected erythrocytes (RBCs). IgG obtained from volunteers in 2009 showed increased reactivity to the surfaces of CGS-parasitized erythrocytes over IgG from 2008. Since P. falciparum EMP-1 (PfEMP-1) is a major variant surface antigen, we used var Ups quantitative reverse transcription-PCR (qRT-PCR) and sequencing with degenerate DBL1α domain primers to characterize the var genes expressed by CGS parasites after short-term in vitro culture. CGS parasites show upregulation of UpsA var genes and 2-cysteine-containing PfEMP-1 molecules and express the same dominant var transcript. Our work indicates that the CGS parasites in this cluster express similar var genes, more than would be expected by chance in the population, and that there is year-to-year variation in immune recognition of surface antigens on CGS parasite-infected erythrocytes. This study lays the groundwork for detailed investigations of the mechanisms driving the expansion or contraction of specific parasite clones in the population.