Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory V. Lowry is active.

Publication


Featured researches published by Gregory V. Lowry.


Nature Nanotechnology | 2009

Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective

Mélanie Auffan; Jérôme Rose; Jean-Yves Bottero; Gregory V. Lowry; Jean-Pierre Jolivet; Mark R. Wiesner

The regulation of engineered nanoparticles requires a widely agreed definition of such particles. Nanoparticles are routinely defined as particles with sizes between about 1 and 100 nm that show properties that are not found in bulk samples of the same material. Here we argue that evidence for novel size-dependent properties alone, rather than particle size, should be the primary criterion in any definition of nanoparticles when making decisions about their regulation for environmental, health and safety reasons. We review the size-dependent properties of a variety of inorganic nanoparticles and find that particles larger than about 30 nm do not in general show properties that would require regulatory scrutiny beyond that required for their bulk counterparts.


Environmental Science & Technology | 2012

Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity

Clément Levard; E. Matt Hotze; Gregory V. Lowry; Gordon E. Brown

Silver nanoparticles (Ag-NPs) readily transform in the environment, which modifies their properties and alters their transport, fate, and toxicity. It is essential to consider such transformations when assessing the potential environmental impact of Ag-NPs. This review discusses the major transformation processes of Ag-NPs in various aqueous environments, particularly transformations of the metallic Ag cores caused by reactions with (in)organic ligands, and the effects of such transformations on physical and chemical stability and toxicity. Thermodynamic arguments are used to predict what forms of oxidized silver will predominate in various environmental scenarios. Silver binds strongly to sulfur (both organic and inorganic) in natural systems (fresh and sea waters) as well as in wastewater treatment plants, where most Ag-NPs are expected to be concentrated and then released. Sulfidation of Ag-NPs results in a significant decrease in their toxicity due to the lower solubility of silver sulfide, potentially limiting their short-term environmental impact. This review also discusses some of the major unanswered questions about Ag-NPs, which, when answered, will improve predictions about their potential environmental impacts. Research needed to address these questions includes fundamental molecular-level studies of Ag-NPs and their transformation products, particularly Ag(2)S-NPs, in simplified model systems containing common (in)organic ligands, as well as under more realistic environmental conditions using microcosm/mesocosm-type experiments. Toxicology studies of Ag-NP transformation products, including different states of aggregation and sulfidation, are also required. In addition, there is the need to characterize the surface structures, compositions, and morphologies of Ag-NPs and Ag(2)S-NPs to the extent possible because they control properties such as solubility and reactivity.


Environmental Science & Technology | 2012

Transformations of Nanomaterials in the Environment

Gregory V. Lowry; Kelvin B. Gregory; Simon C. Apte; Jamie R. Lead

Increasing use of engineered nanomaterials with novel properties relative to their bulk counterparts has generated a need to define their behaviors and impacts in the environment. The high surface area to volume ratio of nanoparticles results in highly reactive and physiochemically dynamic materials in environmental media. Many transformations, e.g. reactions with biomacromolecules, redox reactions, aggregation, and dissolution, may occur in both environmental and biological systems. These transformations and others will alter the fate, transport, and toxicity of nanomaterials. The nature and extent of these transformations must be understood before significant progress can be made toward understanding the environmental risks posed by these materials.


Environmental Health Perspectives | 2007

Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro.

Thomas C. Long; Julianne Tajuba; Preethi Sama; Navid B. Saleh; Carol D. Swartz; Joel S. Parker; Susan D. Hester; Gregory V. Lowry; Bellina Veronesi

Background Titanium dioxide is a widely used nanomaterial whose photo-reactivity suggests that it could damage biological targets (e.g., brain) through oxidative stress (OS). Objectives Brain cultures of immortalized mouse microglia (BV2), rat dopaminergic (DA) neurons (N27), and primary cultures of embryonic rat striatum, were exposed to Degussa P25, a commercially available TiO2 nanomaterial. Physical properties of P25 were measured under conditions that paralleled biological measures. Findings P25 rapidly aggregated in physiological buffer (800–1,900 nm; 25°C) and exposure media (~ 330 nm; 37°C), and maintained a negative zeta potential in both buffer (–12.2 ± 1.6 mV) and media (–9.1 ± 1.2 mV). BV2 microglia exposed to P25 (2.5–120 ppm) responded with an immediate and prolonged release of reactive oxygen species (ROS). Hoechst nuclear stain was reduced after 24-hr (≥100 ppm) and 48-hr (≥2.5 ppm) exposure. Microarray analysis on P25-exposed BV2 microglia indicated up-regulation of inflammatory, apoptotic, and cell cycling pathways and down-regulation of energy metabolism. P25 (2.5–120 ppm) stimulated increases of intracellular ATP and caspase 3/7 activity in isolated N27 neurons (24–48 hr) but did not produce cytotoxicity after 72-hr exposure. Primary cultures of rat striatum exposed to P25 (5 ppm) showed a reduction of immunohistochemically stained neurons and microscopic evidence of neuronal apoptosis after 6-hr exposure. These findings indicate that P25 stimulates ROS in BV2 microglia and is nontoxic to isolated N27 neurons. However, P25 rapidly damages neurons at low concentrations in complex brain cultures, plausibly though microglial generated ROS.


Environmental Science & Technology | 2011

Sulfidation Processes of PVP-Coated Silver Nanoparticles in Aqueous Solution: Impact on Dissolution Rate

Clément Levard; Brian C. Reinsch; F. Marc Michel; Camella Oumahi; Gregory V. Lowry; Gordon E. Brown

Despite the increasing use of silver nanoparticles (Ag-NPs) in nanotechnology and their toxicity to invertebrates, the transformations and fate of Ag-NPs in the environment are poorly understood. This work focuses on the sulfidation processes of PVP-coated Ag-NPs, one of the most likely corrosion phenomena that may happen in the environment. The sulfur to Ag-NPs ratio was varied in order to control the extent of Ag-NPs transformation to silver sulfide (Ag₂S). A combination of synchrotron-based X-ray Diffraction (XRD) and Extended X-ray Absorption Fine Structure spectroscopy shows the increasing formation of Ag₂S with an increasing sulfur to Ag-NPs ratio. TEM observations show that Ag₂S forms nanobridges between the Ag-NPs leading to chain-like structures. In addition, sulfidation strongly affects surface properties of the Ag-NPs in terms of surface charge and dissolution rate. Both may affect the reactivity, transport, and toxicity of Ag-NPs in soils. In particular, the decrease of dissolution rate as a function of sulfide exposure may strongly limit Ag-NPs toxicity since released Ag⁺ ions are known to be a major factor in the toxicity of Ag-NPs.


Environmental Science & Technology | 2012

Size-Controlled Dissolution of Organic-Coated Silver Nanoparticles

Rui Ma; Clément Levard; Stella M. Marinakos; Yingwen Cheng; Jie Liu; F. Marc Michel; Gordon E. Brown; Gregory V. Lowry

The solubility of Ag NPs can affect their toxicity and persistence in the environment. We measured the solubility of organic-coated silver nanoparticles (Ag NPs) having particle diameters ranging from 5 to 80 nm that were synthesized using various methods, and with different organic polymer coatings including poly(vinylpyrrolidone) and gum arabic. The size and morphology of Ag NPs were characterized by transmission electron microscopy (TEM). X-ray absorption fine structure (XAFS) spectroscopy and synchrotron-based total X-ray scattering and pair distribution function (PDF) analysis were used to determine the local structure around Ag and evaluate changes in crystal lattice parameters and structure as a function of NP size. Ag NP solubility dispersed in 1 mM NaHCO(3) at pH 8 was found to be well correlated with particle size based on the distribution of measured TEM sizes as predicted by the modified Kelvin equation. Solubility of Ag NPs was not affected by the synthesis method and coating as much as by their size. Based on the modified Kelvin equation, the surface tension of Ag NPs was found to be ∼1 J/m(2), which is expected for bulk fcc (face centered cubic) silver. Analysis of XAFS, X-ray scattering, and PDFs confirm that the lattice parameter, a, of the fcc crystal structure of Ag NPs did not change with particle size for Ag NPs as small as 6 nm, indicating the absence of lattice strain. These results are consistent with the finding that Ag NP solubility can be estimated based on TEM-derived particle size using the modified Kelvin equation for particles in the size range of 5-40 nm in diameter.


Environmental Science & Technology | 2012

Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland.

Gregory V. Lowry; Benjamin Espinasse; Appala Raju Badireddy; Curtis J. Richardson; Brian C. Reinsch; Lee D. Bryant; Audrey J. Bone; Amrika Deonarine; So-Ryong Chae; Mathieu Therezien; Benjamin P. Colman; Heileen Hsu-Kim; Emily S. Bernhardt; Cole W. Matson; Mark R. Wiesner

Transformations and long-term fate of engineered nanomaterials must be measured in realistic complex natural systems to accurately assess the risks that they may pose. Here, we determine the long-term behavior of poly(vinylpyrrolidone)-coated silver nanoparticles (AgNPs) in freshwater mesocosms simulating an emergent wetland environment. AgNPs were either applied to the water column or to the terrestrial soils. The distribution of silver among water, solids, and biota, and Ag speciation in soils and sediment was determined 18 months after dosing. Most (70 wt %) of the added Ag resided in the soils and sediments, and largely remained in the compartment in which they were dosed. However, some movement between soil and sediment was observed. Movement of AgNPs from terrestrial soils to sediments was more facile than from sediments to soils, suggesting that erosion and runoff is a potential pathway for AgNPs to enter waterways. The AgNPs in terrestrial soils were transformed to Ag(2)S (~52%), whereas AgNPs in the subaquatic sediment were present as Ag(2)S (55%) and Ag-sulfhydryl compounds (27%). Despite significant sulfidation of the AgNPs, a fraction of the added Ag resided in the terrestrial plant biomass (~3 wt % for the terrestrially dosed mesocosm), and relatively high body burdens of Ag (0.5-3.3 μg Ag/g wet weight) were found in mosquito fish and chironomids in both mesocosms. Thus, Ag from the NPs remained bioavailable even after partial sulfidation and when water column total Ag concentrations are low (<0.002 mg/L).


Environmental Science & Technology | 2010

Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli.

Zhiqiang Li; Karl Greden; Pedro J. J. Alvarez; Kelvin B. Gregory; Gregory V. Lowry

Nanoscale zerovalent iron (NZVI) is used for groundwater remediation. Freshly synthesized bare, i.e. uncoated NZVI is bactericidal at low mg/L concentration, but the impact of surface modifiers and aging (partial oxidation) on its bactericidal properties have not been determined. Here we assess the effect that adsorbed synthetic polymers and natural organic matter (NOM) and aging (partial oxidation) have on the bactericidal properties of NZVI to the gram-negative bacterium, Escherichia coli. Exposure to 100 mg/L of bare NZVI with 28% Fe(0) content resulted in a 2.2-log inactivation after 10 min and a 5.2-log inactivation after 60 min. Adsorbed poly(styrene sulfonate) (PSS), poly(aspartate) (PAP), or NOM on NZVI with the same Fe(0) content significantly decreased its toxicity, causing less than 0.2-log inactivation after 60 min. TEM images and heteroaggregation studies indicate that bare NZVI adheres significantly to cells and that the adsorbed polyelectrolyte or NOM prevents adhesion, thereby decreasing NZVI toxicity. The 1.8-log inactivation observed for bare NZVI with 7% Fe(0) content was lower than the 5.2-log inactivation using NZVI with 28% Fe(0) after 1 h; however, the minimum inhibitory concentration (MIC) after 24 h was 5 mg/L regardless of Fe(0) content. The MIC of PSS, PAP, and NOM coated NZVI were much higher: 500 mg/L, 100 mg/L, and 100 mg/L, respectively. But the MIC was much lower than the typical injection concentration used in remediation (10 g/L). Complete oxidation of Fe(0) in NZVI under aerobic conditions eliminated its bactericidal effects. This study indicates that polyelectrolyte coatings and NOM will mitigate the toxicity of NZVI for exposure concentrations below 0.1 to 0.5 g/L depending on the coating and that aged NZVI without Fe(0) is relatively benign to bacteria.


Environmental Science & Technology | 2012

Sulfidation of Silver Nanoparticles Decreases Escherichia coli Growth Inhibition

Brian C. Reinsch; Clément Levard; Zhiqiang Li; Rui Ma; A. Wise; Kelvin B. Gregory; Gordon E. Brown; Gregory V. Lowry

Sulfidation of metallic nanoparticles such as silver nanoparticles (AgNPs) released to the environment may be an important detoxification mechanism. Two types of AgNPs-an engineered polydisperse and aggregated AgNP powder, and a laboratory-synthesized, relatively monodisperse AgNP aqueous dispersion-were studied. The particles were sulfidized to varying degrees and characterized to determine the effect of initial AgNP polydispersity and aggregation state on AgNP sulfidation, and then exposed to Escherichia coli to determine if the degree of sulfidation of pristine AgNPs affects growth inhibition of bacteria. The extent of sulfidation was found to depend on the HS(-)/Ag ratio. However, for the same reaction times, the more monodisperse particles were fully transformed to Ag(2)S, and the polydisperse, aggregated particles were not fully sulfidized, thus preserving the toxic potential of Ag(0) in the aggregates. A higher Ag(2)S:Ag(0) ratio in the sulfidized nanoparticles resulted in less growth inhibition of E. coli over 6 h of exposure. These results suggest that the initial properties of AgNPs can affect sulfidation products, which in turn affect microbial growth inhibition, and that these properties should be considered in assessing the environmental impact of AgNPs.


Environmental Science & Technology | 2013

Effect of Chloride on the Dissolution Rate of Silver Nanoparticles and Toxicity to E. coli

Clément Levard; Sumit Mitra; Tiffany Yang; Adam D. Jew; Appala Raju Badireddy; Gregory V. Lowry; Gordon E. Brown

Pristine silver nanoparticles (AgNPs) are not chemically stable in the environment and react strongly with inorganic ligands such as sulfide and chloride once the silver is oxidized. Understanding the environmental transformations of AgNPs in the presence of specific inorganic ligands is crucial to determining their fate and toxicity in the environment. Chloride (Cl(-)) is a ubiquitous ligand with a strong affinity for oxidized silver and is often present in natural waters and in bacterial growth media. Though chloride can strongly affect toxicity results for AgNPs, their interaction is rarely considered and is challenging to study because of the numerous soluble and solid Ag-Cl species that can form depending on the Cl/Ag ratio. Consequently, little is known about the stability and dissolution kinetics of AgNPs in the presence of chloride ions. Our study focuses on the dissolution behavior of AgNPs in chloride-containing systems and also investigates the effect of chloride on the growth inhibition of E.coli (ATCC strain 33876) caused by Ag toxicity. Our results suggest that the kinetics of dissolution are strongly dependent on the Cl/Ag ratio and can be interpreted using the thermodynamically expected speciation of Ag in the presence of chloride. We also show that the toxicity of AgNPs to E.coli at various Cl(-) concentrations is governed by the amount of dissolved AgCl(x)((x-1)-) species suggesting an ion effect rather than a nanoparticle effect.

Collaboration


Dive into the Gregory V. Lowry's collaboration.

Top Co-Authors

Avatar

Robert D. Tilton

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Tanapon Phenrat

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelvin B. Gregory

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Navid B. Saleh

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Dzombak

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge