Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory V. Plano is active.

Publication


Featured researches published by Gregory V. Plano.


Molecular Microbiology | 1993

Regulation by Ca2+ in the Yersinia low-Ca2+ response

Susan C. Straley; Gregory V. Plano; Elz̈bieta Skrzypek; Pryce L. Haddix; Kenneth A. Fields

The Yersinia low‐Ca2+ response (LCR) is a regulatory response in which a set of plasmid‐borne operons is transcriptionally regulated at 37°C in response to the presence or absence of mM concentrations of Ca2+. LCR‐regulated operons encode secreted proteins with regulatory and virulence roles as well as non‐secreted regulatory proteins and components of the secretion machinery. Downregulation by Ca2+ is imposed by a signalling cascade that includes secreted proteins and possibly also components of the secretion system and is hypothesized to act on membrane‐bound inductive components. An important rote in LCR induction is played by LcrD, an inner‐membrane protein with homologues in several virulence‐associated and flagella assembly‐related systems in diverse bacterial species. The mechanism of signal transduction in response to Ca2+ is not known, and the proteins that bind DNA to downregulate transcription have not been identified.


Frontiers in Cellular and Infection Microbiology | 2013

The SycN/YscB chaperone-binding domain of YopN is required for the calcium-dependent regulation of Yop secretion by Yersinia pestis

Sabrina S. Joseph; Gregory V. Plano

Numerous Gram-negative bacterial pathogens employ type III secretion systems (T3SSs) to inject effector proteins into eukaryotic cells. The activation of the type III secretion (T3S) process is tightly controlled in all T3SSs. In Yersinia pestis, the secretion of effector proteins, termed Yersinia outer proteins (Yops), is regulated by the activity of the YopN/SycN/YscB/TyeA complex. YopN is a secreted protein that interacts with the SycN/YscB chaperone via an N-terminal chaperone-binding domain (CBD) and with TyeA via a C-terminal TyeA-binding domain (TBD). Efficient YopN secretion is dependent upon its N-terminal secretion signal (SS), CBD, and the SycN/YscB chaperone. In this study, we investigate the role of the YopN CBD in the regulation of Yop secretion. Analysis of YopE/YopN hybrid proteins in which the YopN SS or SS and CBD were replaced with the analogous regions of YopE indicated that the YopN CBD or SycN/YscB chaperone play a role in the regulation of Yop secretion that is independent of their established roles in YopN secretion. To further analyze the role of the YopN CBD in the regulation of Yop secretion a series of tetra-alanine substitution mutants were generated throughout the YopN CBD. A number of these mutants exhibited a defect in the regulation of Yop secretion but showed no defect in YopN secretion or in the interaction of YopN with the SycN/YscB chaperone. Finally, conditions were established that enabled YopN and TyeA to regulate Yop secretion in the absence of the SycN/YscB chaperone. Importantly, a number of the YopN CBD mutants maintained their defect in the regulation of Yop secretion even under the established SycN/YscB chaperone-independent conditions. These studies establish a role for the CBD region of YopN in the regulation of Yop secretion that is independent from its role in YopN secretion or in the binding of the SycN/YscB chaperone.


Molecular Microbiology | 2001

Type III export: new uses for an old pathway

Gregory V. Plano; James B. Day; Franco Ferracci

Gram‐negative bacteria use type III secretion (TTS) systems to translocate proteins into the extracellular environment or directly into eukaryotic cells. These complex secretory systems are assembled from over 20 different structural proteins, including 10 that have counterparts in the flagellar export pathway. Secretion substrates are directed to the TTS machinery via mRNA and/or amino acid secretion signals. TTS chaperones bind to select secretion substrates and assist in the export process. Recent progress in the understanding of TTS is reviewed.


Molecular Microbiology | 2003

Translocation of YopE and YopN into eukaryotic cells by Yersinia pestis yopN, tyeA, sycN, yscB and lcrG deletion mutants measured using a phosphorylatable peptide tag and phosphospecific antibodies

James B. Day; Franco Ferracci; Gregory V. Plano

Yersinia pestis , the causative agent of plague, exports a set of virulence proteins called Yops upon contact with eukaryotic cells. A subset of these Yops is translocated directly into the cytosol of host cells. In this study, a novel protein tag‐based reporter system is used to measure the translocation of Yops into cultured eukaryotic cells. The reporter system uses a small bipartite phosphorylatable peptide tag, termed the Elk tag. Translocation of an Elk‐tagged protein into eukaryotic cells results in host cell protein kinase‐dependent phosphorylation of the tag at a specific serine residue, which can subsequently be detected with phosphospecific antibodies. The YopN, TyeA, SycN, YscB and LcrG proteins function to prevent Yop secretion before host cell contact. The role of these proteins was investigated in the translocation of Elk‐tagged YopE (YopE 129 –Elk) and YopN (YopN 293 –Elk) into HeLa cells. Y. pestis yopN , tyeA , sycN and yscB deletion mutants showed reduced levels of YopE 129 –Elk phosphorylation compared with the parent strain, indicating that these mutants translocate reduced amounts of YopE. We also demonstrate that YopN 293 –Elk is translocated into HeLa cells and that this process is more efficient in a Yersinia yop polymutant strain lacking the six translocated effector Yops. Y. pestis sycN and yscB mutants translocated reduced amounts of YopN 293 –Elk; however, tyeA and lcrG mutants translocated higher amounts of YopN 293 –Elk compared with the parent strain. These data suggest that TyeA and LcrG function to suppress the secretion of YopN before host cell contact, whereas SycN and YscB facilitate YopN secretion and subsequent translocation.


Infection and Immunity | 2006

Measurement of Effector Protein Injection by Type III and Type IV Secretion Systems by Using a 13-Residue Phosphorylatable Glycogen Synthase Kinase Tag

Julie Torruellas Garcia; Franco Ferracci; Michael W. Jackson; Sabrina S. Joseph; Isabelle Pattis; Lisa R. W. Plano; Wolfgang Fischer; Gregory V. Plano

ABSTRACT Numerous bacterial pathogens use type III secretion systems (T3SSs) or T4SSs to inject or translocate virulence proteins into eukaryotic cells. Several different reporter systems have been developed to measure the translocation of these proteins. In this study, a peptide tag-based reporter system was developed and used to monitor the injection of T3S and T4S substrates. The glycogen synthase kinase (GSK) tag is a 13-residue phosphorylatable peptide tag derived from the human GSK-3β kinase. Translocation of a GSK-tagged protein into a eukaryotic cell results in host cell protein kinase-dependent phosphorylation of the tag, which can be detected with phosphospecific GSK-3β antibodies. A series of expression plasmids encoding Yop-GSK fusion proteins were constructed to evaluate the ability of the GSK tag to measure the injection of Yops by the Yersinia pestis T3SS. GSK-tagged YopE, YopH, LcrQ, YopK, YopN, and YopJ were efficiently phosphorylated when translocated into HeLa cells. Similarly, the injection of GSK-CagA by the Helicobacter pylori T4SS into different cell types was measured via phosphorylation of the GSK tag. The GSK tag provides a simple method to monitor the translocation of T3S and T4S substrates.


Journal of Biological Chemistry | 2008

Plasminogen Activator Pla of Yersinia pestis Utilizes Murine DEC-205 (CD205) as a Receptor to Promote Dissemination

Shusheng Zhang; Chae Gyu Park; Pei Zhang; Sara Schesser Bartra; Gregory V. Plano; John D. Klena; Mikael Skurnik; B. Joseph Hinnebusch; Tie Chen

Yersinia pestis, a Gram-negative bacterium that causes bubonic and pneumonic plague, is able to rapidly disseminate to other parts of its mammalian hosts. Y. pestis expresses plasminogen activator (PLA) on its surface, which has been suggested to play a role in bacterial dissemination. It has been speculated that Y. pestis hijacks antigen-presenting cells, such as macrophages (MΦs) and dendritic cells, to be delivered to lymph nodes to initiate dissemination and infection. Both alveolar MΦs and pulmonary dendritic cells express a C-type lectin receptor, DEC-205 (CD205), which mediates antigen uptake and presentation. However, no ligand has been identified for DEC-205. In this study, we show that the invasion of alveolar MΦsby Y. pestis depends both in vitro and in vivo on the expression of PLA. DEC-205-expressing MΦs and transfectants, but not their negative counterparts, phagocytosed PLA-expressing Y. pestis and Escherichia coli K12 more efficiently than PLA-negative controls. The interactions between PLA-expressing bacteria and DEC-205-expressing transfectants or alveolar MΦs could be inhibited by an anti-DEC-205 antibody. Importantly, the blockage of the PLA-DEC-205 interaction reduced the dissemination of Y. pestis in mice. In conclusion, murine DEC-205 is a receptor for PLA of Y. pestis, and this host-pathogen interaction appears to play a key role in promoting bacterial dissemination.


Journal of Bacteriology | 2000

The Yersinia pestis YscY protein directly binds YscX, a secreted component of the type III secretion machinery

James B. Day; Gregory V. Plano

Human pathogenic yersiniae organisms export and translocate the Yop virulence proteins and V antigen upon contact with a eukaryotic cell. Yersinia pestis mutants defective for production of YscX or YscY were unable to export the Yops and V antigen. YscX and YscY were both present in the Y. pestis cell pellet fraction; however, YscX was also found in the culture supernatant. YscY showed structural and amino acid sequence similarities to the Syc family of proteins. YscY specifically recognized and bound to a region of YscX that included a predicted coiled-coil region. These data suggest that YscY may function as a chaperone for YscX in Y. pestis.


Infection and Immunity | 2000

Yersinia pestis YscG Protein Is a Syc-Like Chaperone That Directly Binds YscE

James B. Day; Inna Guller; Gregory V. Plano

ABSTRACT Pathogenic Yersinia species secrete virulence proteins, termed Yersinia outer proteins (Yops), upon contact with a eukaryotic cell. The secretion machinery is composed of 21Yersinia secretion (Ysc) proteins. Yersinia pestis mutants defective in expression of YscG or YscE were unable to export the Yops. YscG showed structural and limited amino-acid-sequence similarities to members of the specific Yop chaperone (Syc) family of proteins. YscG specifically recognized and bound YscE; however, unlike previously characterized Syc substrates, YscE was not exported from the cell. These data suggest that YscG functions as a chaperone for YscE.


Journal of Bacteriology | 2004

Expression of a Functional Secreted YopN-TyeA Hybrid Protein in Yersinia pestis Is the Result of a +1 Translational Frameshift Event

Franco Ferracci; James B. Day; Heather J. Ezelle; Gregory V. Plano

YopN is a secreted protein that prior to secretion directly interacts with the cytosolic SycN/YscB chaperone complex and TyeA. This study identifies a secreted YopN-TyeA hybrid protein that is expressed by Yersinia pestis, but not by Yersinia enterocolitica. DNA sequence analysis and site-directed mutagenesis studies demonstrate that the hybrid protein is the result of a +1 translational frameshift event.


Infection and Immunity | 2006

Calcium-Regulated Type III Secretion of Yop Proteins by an Escherichia coli hha Mutant Carrying a Yersinia pestis pCD1 Virulence Plasmid

Sara Schesser Bartra; Michael W. Jackson; Julia A. Ross; Gregory V. Plano

ABSTRACT A series of four large deletions that removed a total of ca. 36 kb of DNA from the ca. 70-kb Yersinia pestis pCD1 virulence plasmid were constructed using lambda Red-mediated recombination. Escherichia coli hha deletion mutants carrying the virulence plasmid with the deletions expressed a functional calcium-regulated type III secretion system. The E. coli hha/pCD1 system should facilitate molecular studies of the type III secretion process.

Collaboration


Dive into the Gregory V. Plano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Joseph Hinnebusch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge