Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory W.L. Hodgins is active.

Publication


Featured researches published by Gregory W.L. Hodgins.


PLOS ONE | 2011

A 33,000-Year-Old Incipient Dog from the Altai Mountains of Siberia: Evidence of the Earliest Domestication Disrupted by the Last Glacial Maximum

Nikolai D. Ovodov; Susan J. Crockford; Yaroslav V. Kuzmin; Thomas Higham; Gregory W.L. Hodgins; Johannes van der Plicht

Background Virtually all well-documented remains of early domestic dog (Canis familiaris) come from the late Glacial and early Holocene periods (ca. 14,000–9000 calendar years ago, cal BP), with few putative dogs found prior to the Last Glacial Maximum (LGM, ca. 26,500–19,000 cal BP). The dearth of pre-LGM dog-like canids and incomplete state of their preservation has until now prevented an understanding of the morphological features of transitional forms between wild wolves and domesticated dogs in temporal perspective. Methodology/Principal Finding We describe the well-preserved remains of a dog-like canid from the Razboinichya Cave (Altai Mountains of southern Siberia). Because of the extraordinary preservation of the material, including skull, mandibles (both sides) and teeth, it was possible to conduct a complete morphological description and comparison with representative examples of pre-LGM wild wolves, modern wolves, prehistoric domesticated dogs, and early dog-like canids, using morphological criteria to distinguish between wolves and dogs. It was found that the Razboinichya Cave individual is most similar to fully domesticated dogs from Greenland (about 1000 years old), and unlike ancient and modern wolves, and putative dogs from Eliseevichi I site in central Russia. Direct AMS radiocarbon dating of the skull and mandible of the Razboinichya canid conducted in three independent laboratories resulted in highly compatible ages, with average value of ca. 33,000 cal BP. Conclusions/Significance The Razboinichya Cave specimen appears to be an incipient dog that did not give rise to late Glacial – early Holocene lineages and probably represents wolf domestication disrupted by the climatic and cultural changes associated with the LGM. The two earliest incipient dogs from Western Europe (Goyet, Belguim) and Siberia (Razboinichya), separated by thousands of kilometers, show that dog domestication was multiregional, and thus had no single place of origin (as some DNA data have suggested) and subsequent spread.


Science | 2014

Paleoindian settlement of the high-altitude Peruvian Andes

Kurt Rademaker; Gregory W.L. Hodgins; Katherine Sledge Moore; Sonia Zarrillo; Christopher E. Miller; Gordon R.M. Bromley; Peter Leach; David A. Reid; Willy Yépez Álvarez; Daniel H. Sandweiss

Mountain dwellers of the Pleistocene Humans colonized the inhospitable high Andes at least 11.5 thousand years ago. Rademaker et al. unearthed evidence of hunter-gatherer occupation at heights of almost 4500 m in Peru in two open-air sites. The sites contained more than 750 tools, including likely spearheads and scrapers. A nearby rockshelter with sooted ceilings and floor detritus may have been a campsite. The sites were probably used seasonally for hunting vicuña and other high-altitude prey. Science, this issue p. 466 Artifacts and rock shelters indicate hunter-gatherer presence at ~4500 meters above sea level, 12.8 to 11.5 thousand years ago. Study of human adaptation to extreme environments is important for understanding our cultural and genetic capacity for survival. The Pucuncho Basin in the southern Peruvian Andes contains the highest-altitude Pleistocene archaeological sites yet identified in the world, about 900 meters above confidently dated contemporary sites. The Pucuncho workshop site [4355 meters above sea level (masl)] includes two fishtail projectile points, which date to about 12.8 to 11.5 thousand years ago (ka). Cuncaicha rock shelter (4480 masl) has a robust, well-preserved, and well-dated occupation sequence spanning the past 12.4 thousand years (ky), with 21 dates older than 11.5 ka. Our results demonstrate that despite cold temperatures and low-oxygen conditions, hunter-gatherers colonized extreme high-altitude Andean environments in the Terminal Pleistocene, within about 2 ky of the initial entry of humans to South America.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Human (Clovis)–gomphothere (Cuvieronius sp.) association ∼13,390 calibrated yBP in Sonora, Mexico

Guadalupe Sanchez; Vance T. Holliday; Edmund P. Gaines; Joaquín Arroyo-Cabrales; Natalia Martínez-Tagüeña; Andrew L. Kowler; Todd Lange; Gregory W.L. Hodgins; Susan M. Mentzer; Ismael Sánchez-Morales

Significance Archaeological evidence from Sonora, Mexico, indicates that the earliest widespread and recognizable group of hunter-gatherers (“Clovis”) were in place ∼13,390 y ago in southwestern North America. This is the earliest well-documented population on the continent and suggests that the unique Clovis artifact style originated in the southwest or south central part of the continent, well south of the Arctic gateways into the continent. These hunters targeted gomphotheres, an elephant common in south and central North America, but unknown in association with humans or at this late age in North America. The earliest known foragers to populate most of North America south of the glaciers [∼11,500 to ≥ ∼10,800 14C yBP; ∼13,300 to ∼12,800 calibrated (Cal) years] made distinctive “Clovis” artifacts. They are stereotypically characterized as hunters of Pleistocene megamammals (mostly mammoth) who entered the continent via Beringia and an ice-free corridor in Canada. The origins of Clovis technology are unclear, however, with no obvious evidence of a predecessor to the north. Here we present evidence for Clovis hunting and habitation ∼11,550 yBP (∼13,390 Cal years) at “El Fin del Mundo,” an archaeological site in Sonora, northwestern Mexico. The site also includes the first evidence to our knowledge for gomphothere (Cuvieronius sp.) as Clovis prey, otherwise unknown in the North American archaeological record and terminal Pleistocene paleontological record. These data (i) broaden the age and geographic range for Clovis, establishing El Fin del Mundo as one of the oldest and southernmost in situ Clovis sites, supporting the hypothesis that Clovis had its origins well south of the gateways into the continent, and (ii) expand the make-up of the North American megafauna community just before extinction.


Geological Society of America Special Papers | 2005

Molluscan radiocarbon as a proxy for El Niño–related upwelling variation in Peru

C. Fred T. Andrus; Gregory W.L. Hodgins; Daniel H. Sandweiss; Douglas E. Crowe

Sequential measurements of molluscan radiocarbon are demonstrated to be an effective proxy of seasonal and El Niño–related upwelling variation in coastal Peru. A Trachycardium procerum valve from southern Peru was measured through ontogeny for radiocarbon via accelerator mass spectrometry (AMS) as well as δC and δO. A specimen collected in 1984 near Casma, Peru (~9.30°S) grew before and during the 1982–1983 El Niño/southern oscillation warm event. Shell morphology recorded El Niño warming as a shallow growth break with subsequent realignment of aragonite crystal microstructure. The presence of this growth pattern indicates that shell material was precipitated during the warm event and that each AMS sample could be independently identifi ed to represent a defi ned period in the El Niño/southern oscillation cycle. Samples taken from portions of the shell precipitated prior to the El Niño warm event (before the diagnostic growth break) had a mean value of 99.8 percent modern carbon (pMC), with a maximum seasonal range of 2.1 pMC. During warming, as indicated by a negative excursion in δO and the growth break, there was an abrupt increase to 107.9 pMC. Aragonite precipitated near the margin of the valve, after the El Niño/southern oscillation event concluded, had radiocarbon values approaching those present before the growth break. We attribute this radiocarbon distribution to variations in vertical mixing of surface and deeper upwelled water of greater ventilation age. As an El Niño event begins and the thermocline deepens, less deep water reaches the surface. Thus, radiocarbon values in shell precipitated during El Niño appear younger (more positive) relative to non–El Niño periods, which represent periods of more intense upwelling. The results from the modern specimen validate the use of molluscan radiocarbon as a proxy of upwelling conditions related to El Niño/southern oscillation and suggest the utility of similar analysis of more ancient valves in both oceanography and paleoclimatology.


Proceedings of the National Academy of Sciences of the United States of America | 2014

American mastodon extirpation in the Arctic and Subarctic predates human colonization and terminal Pleistocene climate change

Grant D. Zazula; Ross D. E. MacPhee; Jessica Z. Metcalfe; Alberto V. Reyes; Fiona Brock; Patrick S. Druckenmiller; Pamela Groves; C. Richard Harington; Gregory W.L. Hodgins; Michael L. Kunz; Fred J. Longstaffe; Daniel H. Mann; H. Gregory McDonald; Shweta Nalawade-Chavan; John Southon

Significance New radiocarbon (14C) dates on American mastodon (Mammut americanum) fossils in Alaska and Yukon suggest this species suffered local extirpation before terminal Pleistocene climate changes or human colonization. Mastodons occupied high latitudes during the Last Interglacial (∼125,000–75,000 y ago) when forests were established. Ecological changes during the Wisconsinan glaciation (∼75,000 y ago) led to habitat loss and population collapse. Thereafter, mastodons were limited to areas south of the continental ice sheets, where they ultimately died out ∼10,000 14C years B.P. Extirpation of mastodons and some other megafaunal species in high latitudes was thus independent of their later extinction south of the ice. Rigorous pretreatment was crucial to removing contamination from fossils that originally yielded erroneously “young” 14C dates. Existing radiocarbon (14C) dates on American mastodon (Mammut americanum) fossils from eastern Beringia (Alaska and Yukon) have been interpreted as evidence they inhabited the Arctic and Subarctic during Pleistocene full-glacial times (∼18,000 14C years B.P.). However, this chronology is inconsistent with inferred habitat preferences of mastodons and correlative paleoecological evidence. To establish a last appearance date (LAD) for M. americanum regionally, we obtained 53 new 14C dates on 36 fossils, including specimens with previously published dates. Using collagen ultrafiltration and single amino acid (hydroxyproline) methods, these specimens consistently date to beyond or near the ∼50,000 y B.P. limit of 14C dating. Some erroneously “young” 14C dates are due to contamination by exogenous carbon from natural sources and conservation treatments used in museums. We suggest mastodons inhabited the high latitudes only during warm intervals, particularly the Last Interglacial [Marine Isotope Stage (MIS) 5] when boreal forests existed regionally. Our 14C dataset suggests that mastodons were extirpated from eastern Beringia during the MIS 4 glacial interval (∼75,000 y ago), following the ecological shift from boreal forest to steppe tundra. Mastodons thereafter became restricted to areas south of the continental ice sheets, where they suffered complete extinction ∼10,000 14C years B.P. Mastodons were already absent from eastern Beringia several tens of millennia before the first humans crossed the Bering Isthmus or the onset of climate changes during the terminal Pleistocene. Local extirpations of mastodons and other megafaunal populations in eastern Beringia were asynchrononous and independent of their final extinction south of the continental ice sheets.


Radiocarbon | 2001

Protocol development for purification and characterization of sub-fossil insect chitin for stable isotopic analysis and radiocarbon dating.

Gregory W.L. Hodgins; J L Thorpe; G R Coope; R. E. M. Hedges

Reliable radiocarbon dating depends upon well-defined samples. We have been investigating whether or not reliable (super 14) C dates can be obtained directly from sub-fossil insect cuticle or biochemical fractions derived from it. Initial carbon and nitrogen stable isotope measurements on sub-fossil insect chitin from species with known feeding behaviors found within a single site (St Bees, Cumbria) clustered in a manner reminiscent of trophic level effects seen in terrestrial ecosystems. Although this finding implied some chemical stability, the measurement of CN ratios from the same samples indicated compositional variability. In addition, (super 14) C dates obtained from these same samples were different from dates obtained from plant macrofossils found at the same depth. We have experimented with protocols designed to biochemically reduce chitin to its principle carbohydrate component glucosamine with the aim of using this compound to generate reliable (super 14) C dates. Solvent extractions of sub-fossil chitin were carried out to remove both endogenous and exogenous lipid-soluble materials. Base hydrolysis reactions designed to extract polypeptides retained surprisingly high levels of contaminating amino acids. Proteinase K enzyme treatment had little affect on the level of amino acid contamination. Strong acid hydrolysis reactions designed to depolymerize chitin to glucosamine yielded only 5% glucosamine. Clearly alternative methods of chitin depolymerization must be identified before the purification and (super 14) C dating of glucosamine from sub-fossil chitin becomes practical.


Radioactivity in the Environment | 2006

Application of accelerator mass spectrometry to environmental and paleoclimate studies at the University of Arizona

A. J. Timothy Jull; George S. Burr; J. Warren Beck; Gregory W.L. Hodgins; Dana Lee Biddulph; John Gann; Arthur L. Hatheway; Todd Lange; Nathaniel A. Lifton

Abstract A wide range of climatic, geologic and archaeological records can be characterized by measuring their 14 C and 10 Be concentrations, using accelerator mass spectrometry (AMS). These records are found not only in the traditional sampling sites such as lake sediments and ice cores, but also in diverse natural records. The purpose of this paper is to highlight some selected applications of AMS at the University of Arizona, including sample preparation, applications of AMS radiocarbon dating to learning about climatic changes in the past, modern 14 C studies, and 10 Be and 129 I measurements.


Radioactivity in the Environment | 2008

Accelerator mass spectrometry of long-lived light radionuclides

A. J. Timothy Jull; George S. Burr; J. Warren Beck; Gregory W.L. Hodgins; Dana Lee Biddulph; Lanny Ray McHargue; Todd Lange

Abstract Many different kinds of paleoclimatic, geological and archaeological records can be characterized by measuring their radionuclide concentrations using accelerator mass spectrometry (AMS). The purpose of this paper is to highlight some applications of AMS, using studies conducted at the Arizona AMS Facility as examples. These include studies of 14 C, 10 Be, 26 Al, and 129 I. The work can be generally divided into two types: (1) methodological studies designed to refine and improve the capabilities of AMS, and (2) studies which utilize radiogenic isotopes as geochronometers or as geochemical tracers. Studies of the first type include the development of our 26 Al measurement capabilities, the construction on an automated sample preparation line and the construction of a plasma oxidation line. Studies of the latter type include 14 C dating of corals, speleothems and bones; new records of 10 Be from marine sediments and extraterrestrial materials; and 129 I studies of the pathways of this isotope in the surface ocean.


Geology | 2013

Marine radiocarbon reservoir age variation in Donax obesulus shells from northern Peru: Late Holocene evidence for extended El Niño

Miguel F. Etayo-Cadavid; C. Fred T. Andrus; Kevin B. Jones; Gregory W.L. Hodgins; Daniel H. Sandweiss; Santiago Uceda-Castillo; Jeffrey Quilter

For at least 6 m.y., El Nino events have posed the greatest environmental risk on the Peruvian coast. A better understanding of El Nino is essential for predicting future risk and growth in this tropical desert. To achieve this we analyzed archaeological and modern pre-bomb shells from the surf clam Donax for the radiocarbon reservoir effect (ΔR) to characterize late Holocene coastal upwelling conditions in northern Peru (8°14′S). Mean ΔR values from these shells suggest that modern upwelling conditions in this region were likely established between A.D. 539 and A.D. 1578. Our radiocarbon data suggest that upwelling conditions ca. A.D. 539 were less intense than those in modern times. The observed coastal water enrichment in 14 C may be consequence of frequent strong El Nino events or extended El Nino–like conditions. These ΔR-inferred marine conditions are in agreement with proposed extended El Nino activity in proxy and archaeological records of ca. A.D. 475–530. Extended El Nino conditions have been linked to political destabilization, societal transformation, and collapse of the Moche civilization in northern Peru. A return to such conditions would have significant impacts on the dense population of this region today and in the near future.


PALAIOS | 2010

Modeling molluscan marine reservoir ages in a variable-upwelling environment

Kevin B. Jones; Gregory W.L. Hodgins; C. Fred T. Andrus; Miguel F. Etayo-Cadavid

Abstract Changes in marine upwelling can affect the radiocarbon content of seawater and thus affect the marine radiocarbon reservoir age, R. These radiocarbon variations are preserved in mollusk shell carbonate. Shell-based estimates of R in a variable-upwelling environment can be biased by (1) changes in molluscan growth rates due to fluctuating environmental conditions and (2) time averaging during sampling due to homogenization of days or weeks of precipitated carbonate. We modeled the growth, radiocarbon content, and radiocarbon sampling of two Peruvian mollusks, Argopecten purpuratus (bay scallop) and Mesodesma donacium (surf clam), to quantify these potential biases. Argopecten purpuratus grows year round, but M. donacium prefers cold conditions and its growth rate decreases in summer. Radiocarbon assays by accelerator mass spectrometry on multiple ∼1 mg samples of a model A. purpuratus shell can capture the full range of annual R variation; similar sampling of a model M. donacium shell only captures ≤75% of this range. Given an annual R variation of 530 14C yr, the mean R calculated using a group of ∼1 mg carbonate samples from an A. purpuratus shell is within 30 14C yr of the actual mean R; that of a M. donacium shell may be skewed up to 140 14C yr older than the actual marine mean. If growth tolerances and parameters of mollusks used for R analyses are considered, it may be possible to correct for these biases and improve the accuracy of marine radiocarbon chronometry.

Collaboration


Dive into the Gregory W.L. Hodgins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin B. Jones

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Yaroslav V. Kuzmin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge