Greta Guarda
University of Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Greta Guarda.
Immunological Reviews | 2011
Olaf Gross; Christina J. Thomas; Greta Guarda; Jürg Tschopp
Summary: An inflammasome is a multiprotein complex that serves as a platform for caspase‐1 activation and caspase‐1‐dependent proteolytic maturation and secretion of interleukin‐1β (IL‐1β). Though a number of inflammasomes have been described, the NLRP3 inflammasome is the most extensively studied but also the most elusive. It is unique in that it responds to numerous physically and chemically diverse stimuli. The potent proinflammatory and pyrogenic activities of IL‐1β necessitate that inflammasome activity is tightly controlled. To this end, a priming step is first required to induce the expression of both NLRP3 and proIL‐1β. This event renders the cell competent for NLRP3 inflammasome activation and IL‐1β secretion, and it is highly regulated by negative feedback loops. Despite the wide array of NLRP3 activators, the actual triggering of NLRP3 is controlled by integration a comparatively small number of signals that are common to nearly all activators. Minimally, these include potassium efflux, elevated levels of reactive oxygen species (ROS), and, for certain activators, lysosomal destabilization. Further investigation of how these and potentially other as yet uncharacterized signals are integrated by the NLRP3 inflammasome and the relevance of these biochemical events in vivo should provide new insight into the mechanisms of host defense and autoinflammatory conditions.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Amir S. Yazdi; Greta Guarda; Nicolas Riteau; Stefan K. Drexler; Aubry Tardivel; Isabelle Couillin; Jürg Tschopp
Nanoparticles are increasingly used in various fields, including biomedicine and electronics. One application utilizes the opacifying effect of nano-TiO2, which is frequently used as pigment in cosmetics. Although TiO2 is believed to be biologically inert, an emerging literature reports increased incidence of respiratory diseases in people exposed to TiO2. Here, we show that nano-TiO2 and nano-SiO2, but not nano-ZnO, activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome, leading to IL-1β release and in addition, induce the regulated release of IL-1α. Unlike other particulate Nlrp3 agonists, nano-TiO2–dependent-Nlrp3 activity does not require cytoskeleton-dependent phagocytosis and induces IL-1α/β secretion in nonphagocytic keratinocytes. Inhalation of nano-TiO2 provokes lung inflammation which is strongly suppressed in IL-1R– and IL-1α–deficient mice. Thus, the inflammation caused by nano-TiO2 in vivo is largely caused by the biological effect of IL-1α. The current use of nano-TiO2 may present a health hazard due to its capacity to induce IL-1R signaling, a situation reminiscent of inflammation provoked by asbestos exposure.
Immunity | 2012
Olaf Groß; Amir S. Yazdi; Christina J. Thomas; Mark Masin; Leonhard X. Heinz; Greta Guarda; Manfredo Quadroni; Stefan K. Drexler; Jürg Tschopp
Through their capacity to sense danger signals and to generate active interleukin-1β (IL-1β), inflammasomes occupy a central role in the inflammatory response. In contrast to IL-1β, little is known about how IL-1α is regulated. We found that all inflammasome activators also induced the secretion of IL-1α, leading to the cosecretion of both IL-1 cytokines. Depending on the type of inflammasome activator, release of IL-1α was inflammasome dependent or independent. Calcium influx induced by the opening of cation channels was sufficient for the inflammasome-independent IL-1α secretion. In both cases, IL-1α was released primarily in a processed form, resulting from intracellular cleavage by calpain-like proteases. Inflammasome-caspase-1-dependent release of IL-1α and IL-1β was independent of caspase-1 catalytic activity, defining a mode of action for caspase-1. Because inflammasomes contribute to the pathology of numerous chronic inflammatory diseases such as gout and diabetes, IL-1α antagonists may be beneficial in the treatment of these disorders.
PLOS ONE | 2009
Catherine Dostert; Greta Guarda; Jackeline F. Romero; Philippe Menu; Olaf Gross; Aubry Tardivel; Mario-Luca Suvà; Jean-Christophe Stehle; Manfred Kopf; Ivan Stamenkovic; Giampietro Corradin; Jürg Tschopp
Background Characteristic symptoms of malaria include recurrent fever attacks and neurodegeneration, signs that are also found in patients with a hyperactive Nalp3 inflammasome. Plasmodium species produce a crystal called hemozoin that is generated by detoxification of heme after hemoglobin degradation in infected red blood cells. Thus, we hypothesized that hemozoin could activate the Nalp3 inflammasome, due to its particulate nature reminiscent of other inflammasome-activating agents. Methodology/Principal Findings We found that hemozoin acts as a proinflammatory danger signal that activates the Nalp3 inflammasome, causing the release of IL-1β. Similar to other Nalp3-activating particles, hemozoin activity is blocked by inhibiting phagocytosis, K+ efflux and NADPH oxidase. In vivo, intraperitoneal injection of hemozoin results in acute peritonitis, which is impaired in Nalp3-, caspase-1- and IL-1R-deficient mice. Likewise, the pathogenesis of cerebral malaria is dampened in Nalp3-deficient mice infected with Plasmodium berghei sporozoites, while parasitemia remains unchanged. Significance/Conclusions The potent pro-inflammatory effect of hemozoin through inflammasome activation may possibly be implicated in plasmodium-associated pathologies such as cerebral malaria.
Nature | 2009
Greta Guarda; Catherine Dostert; Francesco Staehli; Katrin Cabalzar; Rosa Castillo; Aubry Tardivel; Pascal Schneider; Jürg Tschopp
Inflammation is a protective attempt by the host to remove injurious stimuli and initiate the tissue healing process. The inflammatory response must be actively terminated, however, because failure to do so can result in ‘bystander’ damage to tissues and diseases such as arthritis or type-2 diabetes. Yet the mechanisms controlling excessive inflammatory responses are still poorly understood. Here we show that mouse effector and memory CD4+ T cells abolish macrophage inflammasome-mediated caspase-1 activation and subsequent interleukin 1β release in a cognate manner. Inflammasome inhibition is observed for all tested NLRP1 (commonly called NALP1) and NLRP3 (NALP3 or cryopyrin) activators, whereas NLRC4 (IPAF) inflammasome function and release of other inflammatory mediators such as CXCL2, interleukin 6 and tumour necrosis factor are not affected. Suppression of the NLRP3 inflammasome requires cell-to-cell contact and can be mimicked by macrophage stimulation with selected ligands of the tumour necrosis factor family, such as CD40L (also known as CD40LG). In a NLRP3-dependent peritonitis model, effector CD4+ T cells are responsible for decreasing neutrophil recruitment in an antigen-dependent manner. Our findings reveal an unexpected mechanism of inflammasome inhibition, whereby effector and memory T cells suppress potentially damaging inflammation, yet leave the primary inflammatory response, crucial for the onset of immunity, intact.
Nature Immunology | 2007
Greta Guarda; Miroslav Hons; Silvia F. Soriano; Alex Y. Huang; Rosalind Polley; Alfonso Martín-Fontecha; Jens V. Stein; Ronald N. Germain; Antonio Lanzavecchia; Federica Sallusto
T lymphocytes lacking the lymph node–homing receptors L-selectin and CCR7 do not migrate to lymph nodes in the steady state. Instead, we found here that lymph nodes draining sites of mature dendritic cells or adjuvant inoculation recruited L-selectin-negative CCR7− effector and memory CD8+ T cells. This recruitment required CXCR3 expression on T cells and occurred through high endothelial venules in concert with lumenal expression of the CXCR3 ligand CXCL9. In reactive lymph nodes, recruited T cells established stable interactions with and killed antigen-bearing dendritic cells, limiting the ability of these dendritic cells to activate naive CD4+ and CD8+ T cells. The inducible recruitment of blood-borne effector and memory T cells to lymph nodes may represent a mechanism for terminating primary and limiting secondary immune responses.
Journal of Immunology | 2011
Greta Guarda; Manuel Zenger; Amir S. Yazdi; Kate Schroder; Isabel Ferrero; Philippe Menu; Aubry Tardivel; Chantal Mattmann; Jiirg Tschopp
Although the importance of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in health and disease is well appreciated, a precise characterization of NLRP3 expression is yet undetermined. To this purpose, we generated a knock-in mouse in which the Nlrp3 coding sequence was substituted for the GFP (enhanced GFP [egfp]) gene. In this way, the expression of eGFP is driven by the endogenous regulatory elements of the Nlrp3 gene. In this study, we show that eGFP expression indeed mirrors that of NLRP3. Interestingly, splenic neutrophils, macrophages, and, in particular, monocytes and conventional dendritic cells showed robust eGFP fluorescence, whereas lymphoid subsets, eosinophils, and plasmacytoid dendritic cells showed negligible eGFP levels. NLRP3 expression was highly inducible in macrophages, both by MyD88- and Trif-dependent pathways. In vivo, when mice were challenged with diverse inflammatory stimuli, differences in both the number of eGFP-expressing cells and fluorescence intensity were observed in the draining lymph node. Thus, NLRP3 levels at the site of adaptive response initiation are controlled by recruitment of NLRP3-expressing cells and by NLRP3 induction.
Nature Immunology | 2012
Greta Guarda; Thomas Gebhardt; Leif E. Sander; Kirsty R. Short; Dimitri A. Diavatopoulos; Odilia L. C. Wijburg; Hanwei Cao; Jason Waithman; Weisan Chen; Daniel Fernandez-Ruiz; Paul G. Whitney; William R. Heath; Roy Curtiss; Jürg Tschopp; Richard A. Strugnell; Sammy Bedoui
Memory T cells exert antigen-independent effector functions, but how these responses are regulated is unclear. We discovered an in vivo link between flagellin-induced NLRC4 inflammasome activation in splenic dendritic cells (DCs) and host protective interferon-γ (IFN-γ) secretion by noncognate memory CD8+ T cells, which could be activated by Salmonella enterica serovar Typhimurium, Yersinia pseudotuberculosis and Pseudomonas aeruginosa. We show that CD8α+ DCs were particularly efficient at sensing bacterial flagellin through NLRC4 inflammasomes. Although this activation released interleukin 18 (IL-18) and IL-1β, only IL-18 was required for IFN-γ production by memory CD8+ T cells. Conversely, only the release of IL-1β, but not IL-18, depended on priming signals mediated by Toll-like receptors. These findings provide a comprehensive mechanistic framework for the regulation of noncognate memory T cell responses during bacterial immunity.
Journal of Experimental Medicine | 2013
Dragana Jankovic; Jayanthi Ganesan; Michael Bscheider; Natalie Stickel; Felix C. Weber; Greta Guarda; Marie Follo; Dietmar Pfeifer; Aubry Tardivel; Kristina Ludigs; Abdellatif Bouazzaoui; Katrin Kerl; Julius C. Fischer; Tobias Haas; Annette Schmitt-Gräff; Anand Manoharan; Leonard Müller; Jürgen Finke; Stefan F. Martin; Oliver Gorka; Christian Peschel; Jürgen Ruland; Marco Idzko; Justus Duyster; Ernst Holler; Lars E. French; Hendrik Poeck; Emmanuel Contassot; Robert Zeiser
Conditioning therapies before transplantation induce the release of uric acid, which triggers the NLRP3 inflammasome and IL-1β production contributing to graft-versus-host disease.
The Journal of Allergy and Clinical Immunology | 2013
Laeticia Kolly; Nathalie Busso; Annette von Scheven-Gête; Nathaliane Bagnoud; Isabelle Moix; Dirk Holzinger; Gregoire Simon; Annette Ives; Greta Guarda; Alexander So; Michael A. Morris; Michael Hofer
BACKGROUND The exact pathogenesis of the pediatric disorder periodic fever, aphthous stomatitis, pharyngitis, cervical adenitis (PFAPA) syndrome is unknown. OBJECTIVES We hypothesized that PFAPA might be due to dysregulated monocyte IL-1β production linked to genetic variants in proinflammatory genes. METHODS Fifteen patients with PFAPA syndrome were studied during and outside a febrile episode. Hematologic profile, inflammatory markers, and cytokine levels were measured in the blood. The capacity of LPS-stimulated PBMCs and monocytes to secrete IL-1β was assessed by using ELISA, and active IL-1β secretion was visualized by means of Western blotting. Real-time quantitative PCR was performed to assess cytokine gene expression. DNA was screened for variants of the MEFV, TNFRSF1A, MVK, and NLRP3 genes in a total of 57 patients with PFAPA syndrome. RESULTS During a febrile attack, patients with PFAPA syndrome revealed significantly increased neutrophil counts, erythrocyte sedimentation rates, and C-reactive protein, serum amyloid A, myeloid-related protein 8/14, and S100A12 levels compared with those seen outside attacks. Stimulated PBMCs secreted significantly more IL-1β during an attack (during a febrile episode, 575 ± 88 pg/mL; outside a febrile episode, 235 ± 56 pg/mL; P < .001), and this was in the mature active p17 form. IL-1β secretion was inhibited by ZYVAD, a caspase inhibitor. Similar results were found for stimulated monocytes (during a febrile episode, 743 ± 183 pg/mL; outside a febrile episode, 227 ± 92 pg/mL; P < .05). Genotyping identified variants in 15 of 57 patients, with 12 NLRP3 variants, 1 TNFRSF1A variant, 4 MEFV variants, and 1 MVK variant. CONCLUSION Our data strongly suggest that IL-1β monocyte production is dysregulated in patients with PFAPA syndrome. Approximately 20% of them were found to have NLRP3 variants, suggesting that inflammasome-related genes might be involved in this autoinflammatory syndrome.