Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Greta Sokoloff is active.

Publication


Featured researches published by Greta Sokoloff.


Genome Research | 2011

Genetic analysis in the Collaborative Cross breeding population

Vivek M. Philip; Greta Sokoloff; Cheryl L. Ackert-Bicknell; Martin Striz; Lisa K Branstetter; Melissa A. Beckmann; Jason S. Spence; Barbara L. Jackson; Leslie D. Galloway; Paul E Barker; Ann M. Wymore; Patricia R. Hunsicker; David C. Durtschi; Ginger S. Shaw; Sarah G. Shinpock; Kenneth F. Manly; Darla R. Miller; Kevin D. Donohue; Cymbeline T. Culiat; Gary A. Churchill; William R. Lariviere; Abraham A. Palmer; Bruce F. O'Hara; Brynn H. Voy; Elissa J. Chesler

Genetic reference populations in model organisms are critical resources for systems genetic analysis of disease related phenotypes. The breeding history of these inbred panels may influence detectable allelic and phenotypic diversity. The existing panel of common inbred strains reflects historical selection biases, and existing recombinant inbred panels have low allelic diversity. All such populations may be subject to consequences of inbreeding depression. The Collaborative Cross (CC) is a mouse reference population with high allelic diversity that is being constructed using a randomized breeding design that systematically outcrosses eight founder strains, followed by inbreeding to obtain new recombinant inbred strains. Five of the eight founders are common laboratory strains, and three are wild-derived. Since its inception, the partially inbred CC has been characterized for physiological, morphological, and behavioral traits. The construction of this population provided a unique opportunity to observe phenotypic variation as new allelic combinations arose through intercrossing and inbreeding to create new stable genetic combinations. Processes including inbreeding depression and its impact on allelic and phenotypic diversity were assessed. Phenotypic variation in the CC breeding population exceeds that of existing mouse genetic reference populations due to both high founder genetic diversity and novel epistatic combinations. However, some focal evidence of allele purging was detected including a suggestive QTL for litter size in a location of changing allele frequency. Despite these inescapable pressures, high diversity and precision for genetic mapping remain. These results demonstrate the potential of the CC population once completed and highlight implications for development of related populations.


Journal of Neurogenetics | 2008

Behavioral differences among C57BL/6 substrains: implications for transgenic and knockout studies.

Camron D. Bryant; Nanci N. Zhang; Greta Sokoloff; Michael S. Fanselow; Helena S. Ennes; Abraham A. Palmer; James A. McRoberts

Separate breeding colonies of C57BL/6 (“B6”) mice maintained at the Jackson Laboratories (“J”) and NIH (“N”) have led to the emergence of two distinct substrains of C57BL/6 mice: C57BL/6J and C57BL/6N. Molecular genetic studies indicate simple sequence-length polymorphisms, single-nucleotide polymorphisms, and copy-number variants among B6 substrains that may contribute to phenotypic differences. We examined differences in motor coordination, pain sensitivity, and conditional fear in the C57BL/6J strain and three N strains: C57BL/6NCrl (Charles River), C57BL/6NTac (Taconic), and C57BL/6NHsd (Harlan Sprague Dawley). Male C57BL/6J mice demonstrated enhanced motor coordination, as measured by the rotarod assay, markedly enhanced pain sensitivity in two assays of acute thermal nociception (e.g., tail withdrawal and hot plate), and a reduced level of conditional fear. The tail withdrawal result was confirmed in a separate laboratory. We also provide a table reviewing previously reported behavioral differences among various B6 substrains and discuss the significance of environmental differences due to obtaining mice form different vendors. These data may be seen as a potential problem and as a potential opportunity. Great care must be taken when working with mice engineered by using B6 embryonic stem cell lines because control groups, backcrosses, and intercrosses could inadvertently introduce behaviorally significant polymorphic alleles or environmental confounds. On the other hand, deliberate crosses between B6 substrains may provide an opportunity to map polymorphic loci that contribute to variability in a trait on largely homogenous backgrounds, which has the potential to improve mapping resolution and aid in the selection of candidate genes.


PLOS ONE | 2009

A Common and Unstable Copy Number Variant Is Associated with Differences in Glo1 Expression and Anxiety-Like Behavior

Richard Williams; Jackie E. Lim; Bettina Harr; Claudia Wing; Ryan Walters; Margaret G. Distler; Meike Teschke; Chunlei Wu; Tim Wiltshire; Andrew I. Su; Greta Sokoloff; Lisa M. Tarantino; Justin O. Borevitz; Abraham A. Palmer

Glyoxalase 1 (Glo1) has been implicated in anxiety-like behavior in mice and in multiple psychiatric diseases in humans. We used mouse Affymetrix exon arrays to detect copy number variants (CNV) among inbred mouse strains and thereby identified a ∼475 kb tandem duplication on chromosome 17 that includes Glo1 (30,174,390–30,651,226 Mb; mouse genome build 36). We developed a PCR-based strategy and used it to detect this duplication in 23 of 71 inbred strains tested, and in various outbred and wild-caught mice. Presence of the duplication is associated with a cis-acting expression QTL for Glo1 (LOD>30) in BXD recombinant inbred strains. However, evidence for an eQTL for Glo1 was not obtained when we analyzed single SNPs or 3-SNP haplotypes in a panel of 27 inbred strains. We conclude that association analysis in the inbred strain panel failed to detect an eQTL because the duplication was present on multiple highly divergent haplotypes. Furthermore, we suggest that non-allelic homologous recombination has led to multiple reversions to the non-duplicated state among inbred strains. We show associations between multiple duplication-containing haplotypes, Glo1 expression and anxiety-like behavior in both inbred strain panels and outbred CD-1 mice. Our findings provide a molecular basis for differential expression of Glo1 and further implicate Glo1 in anxiety-like behavior. More broadly, these results identify problems with commonly employed tests for association in inbred strains when CNVs are present. Finally, these data provide an example of biologically significant phenotypic variability in model organisms that can be attributed to CNVs.


PLOS ONE | 2009

Genetic variation and population substructure in outbred CD-1 mice: implications for genome-wide association studies.

Kimberly A. Aldinger; Greta Sokoloff; David Rosenberg; Abraham A. Palmer; Kathleen J. Millen

Outbred laboratory mouse populations are widely used in biomedical research. Since little is known about the degree of genetic variation present in these populations, they are not widely used for genetic studies. Commercially available outbred CD-1 mice are drawn from an extremely large breeding population that has accumulated many recombination events, which is desirable for genome-wide association studies. We therefore examined the degree of genome-wide variation within CD-1 mice to investigate their suitability for genetic studies. The CD-1 mouse genome displays patterns of linkage disequilibrium and heterogeneity similar to wild-caught mice. Population substructure and phenotypic differences were observed among CD-1 mice obtained from different breeding facilities. Differences in genetic variation among CD-1 mice from distinct facilities were similar to genetic differences detected between closely related human populations, consistent with a founder effect. This first large-scale genetic analysis of the outbred CD-1 mouse strain provides important considerations for the design and analysis of genetic studies in CD-1 mice.


Genetics | 2010

Genome-Wide Association Studies and the Problem of Relatedness Among Advanced Intercross Lines and Other Highly Recombinant Populations

Riyan Cheng; Jackie E. Lim; Kaitlin E. Samocha; Greta Sokoloff; Mark Abney; Andrew D. Skol; Abraham A. Palmer

Model organisms offer many advantages for the genetic analysis of complex traits. However, identification of specific genes is often hampered by a lack of recombination between the genomes of inbred progenitors. Recently, genome-wide association studies (GWAS) in humans have offered gene-level mapping resolution that is possible because of the large number of accumulated recombinations among unrelated human subjects. To obtain analogous improvements in mapping resolution in mice, we used a 34th generation advanced intercross line (AIL) derived from two inbred strains (SM/J and LG/J). We used simulations to show that familial relationships among subjects must be accounted for when analyzing these data; we then used a mixed model that included polygenic effects to address this problem in our own analysis. Using a combination of F2 and AIL mice derived from the same inbred progenitors, we identified genome-wide significant, subcentimorgan loci that were associated with methamphetamine sensitivity, (e.g., chromosome 18; LOD = 10.5) and non-drug-induced locomotor activity (e.g., chromosome 8; LOD = 18.9). The 2-LOD support interval for the former locus contains no known genes while the latter contains only one gene (Csmd1). This approach is broadly applicable in terms of phenotypes and model organisms and allows GWAS to be performed in multigenerational crosses between and among inbred strains where familial relatedness is often unavoidable.


Journal of Clinical Investigation | 2012

Glyoxalase 1 increases anxiety by reducing GABAA receptor agonist methylglyoxal

Margaret G. Distler; Leigh D. Plant; Greta Sokoloff; Andrew J. Hawk; Ivy Aneas; Gerald E. Wuenschell; John Termini; Stephen C. Meredith; Marcelo A. Nobrega; Abraham A. Palmer

Glyoxalase 1 (Glo1) expression has previously been associated with anxiety in mice; however, its role in anxiety is controversial, and the underlying mechanism is unknown. Here, we demonstrate that GLO1 increases anxiety by reducing levels of methylglyoxal (MG), a GABAA receptor agonist. Mice overexpressing Glo1 on a Tg bacterial artificial chromosome displayed increased anxiety-like behavior and reduced brain MG concentrations. Treatment with low doses of MG reduced anxiety-like behavior, while higher doses caused locomotor depression, ataxia, and hypothermia, which are characteristic effects of GABAA receptor activation. Consistent with these data, we found that physiological concentrations of MG selectively activated GABAA receptors in primary neurons. These data indicate that GLO1 increases anxiety by reducing levels of MG, thereby decreasing GABAA receptor activation. More broadly, our findings potentially link metabolic state, neuronal inhibitory tone, and behavior. Finally, we demonstrated that pharmacological inhibition of GLO1 reduced anxiety, suggesting that GLO1 is a possible target for the treatment of anxiety disorders.


PLOS ONE | 2012

Genome-Wide Association Study of d -Amphetamine Response in Healthy Volunteers Identifies Putative Associations, Including Cadherin 13 ( CDH13 )

Amy B. Hart; Barbara E. Engelhardt; Margaret C. Wardle; Greta Sokoloff; Matthew Stephens; Harriet de Wit; Abraham A. Palmer

Both the subjective response to d-amphetamine and the risk for amphetamine addiction are known to be heritable traits. Because subjective responses to drugs may predict drug addiction, identifying alleles that influence acute response may also provide insight into the genetic risk factors for drug abuse. We performed a Genome Wide Association Study (GWAS) for the subjective responses to amphetamine in 381 non-drug abusing healthy volunteers. Responses to amphetamine were measured using a double-blind, placebo-controlled, within-subjects design. We used sparse factor analysis to reduce the dimensionality of the data to ten factors. We identified several putative associations; the strongest was between a positive subjective drug-response factor and a SNP (rs3784943) in the 8th intron of cadherin 13 (CDH13; P = 4.58×10−8), a gene previously associated with a number of psychiatric traits including methamphetamine dependence. Additionally, we observed a putative association between a factor representing the degree of positive affect at baseline and a SNP (rs472402) in the 1st intron of steroid-5-alpha-reductase-α-polypeptide-1 (SRD5A1; P = 2.53×10−7), a gene whose protein product catalyzes the rate-limiting step in synthesis of the neurosteroid allopregnanolone. This SNP belongs to an LD-block that has been previously associated with the expression of SRD5A1 and differences in SRD5A1 enzymatic activity. The purpose of this study was to begin to explore the genetic basis of subjective responses to stimulant drugs using a GWAS approach in a modestly sized sample. Our approach provides a case study for analysis of high-dimensional intermediate pharmacogenomic phenotypes, which may be more tractable than clinical diagnoses.


Genes, Brain and Behavior | 2010

Fine mapping of QTL for prepulse inhibition in LG/J and SM/J mice using F2 and advanced intercross lines

Kaitlin E. Samocha; Jackie E. Lim; Riyan Cheng; Greta Sokoloff; Abraham A. Palmer

Prepulse inhibition (PPI) of the startle response is a measure of sensorimotor gating, a process that filters out extraneous sensory, motor and cognitive information. Humans with neurological and psychiatric disorders, including schizophrenia, obsessive‐compulsive disorder and Huntingtons disease, exhibit a reduction in PPI. Habituation of the startle response is also disrupted in schizophrenic patients. In order to elucidate the genes involved in sensorimotor gating, we phenotyped 472 mice from an F2 cross between LG/J × SM/J for PPI and genotyped these mice genome‐wide using 162 single nucleotide polymorphism (SNP) markers. We used prepulse intensity levels that were 3, 6 and 12 dB above background (PPI3, PPI6 and PPI12, respectively). We identified a significant quantitative trait locus (QTL) on chromosome 12 for all three prepulse intensities as well as a significant QTL for both PPI6 and PPI12 on chromosome 11. We identified QTLs on chromosomes 7 and 17 for the startle response when sex was included as an interactive covariate and found a QTL for habituation of the startle response on chromosome 4. We also phenotyped 135 mice from an F34 advanced intercross line (AIL) between LG/J × SM/J for PPI and genotyped them at more than 3000 SNP markers. Inclusions of data from the AIL mice reduced the size of several of these QTLs to less than 5 cM. These results will be useful for identifying genes that influence sensorimotor gaiting and show the power of AIL for fine mapping of QTLs.


Behavior Genetics | 2010

Differences in aggressive behavior and DNA copy number variants between BALB/cJ and BALB/cByJ substrains.

Lady Velez; Greta Sokoloff; Klaus A. Miczek; Abraham A. Palmer; Stephanie C. Dulawa

Some BALB/c substrains exhibit different levels of aggression. We compared aggression levels between male BALB/cJ and BALB/cByJ substrains using the resident intruder paradigm. These substrains were also assessed in other tests of emotionality and information processing including the open field, forced swim, fear conditioning, and prepulse inhibition tests. We also evaluated single nucleotide polymorphisms (SNPs) previously reported between these BALB/c substrains. Finally, we compared BALB/cJ and BALB/cByJ mice for genomic deletions or duplications, collectively termed copy number variants (CNVs), to identify candidate genes that might underlie the observed behavioral differences. BALB/cJ mice showed substantially higher aggression levels than BALB/cByJ mice; however, only minor differences in other behaviors were observed. None of the previously reported SNPs were verified. Eleven CNV regions were identified between the two BALB/c substrains. Our findings identify a robust difference in aggressive behavior between BALB/cJ and BALB/cByJ substrains, which could be the result of the identified CNVs.


Genes, Brain and Behavior | 2012

Genome-wide association for methamphetamine sensitivity in an advanced intercross mouse line.

Clarissa C. Parker; Riyan Cheng; Greta Sokoloff; Abraham A. Palmer

Sensitivity to the locomotor stimulant effects of methamphetamine (MA) is a heritable trait that utilizes neurocircuitry also associated with the rewarding effects of drugs. We used the power of a C57BL/6J × DBA/2J F2 intercross (n = 676) and the precision of a C57BL/6J × DBA/2J F8 advanced intercross line (Aap: B6, D2–G8; or F8 AIL; n = 552) to identify and narrow quantitative trait loci (QTLs) associated with sensitivity to the locomotor stimulant effects of MA. We used the program QTLRel to simultaneously map QTL in the F2 and F8 AIL mice. We identified six genome‐wide significant QTLs associated with locomotor activity at baseline and seven genome‐wide significant QTLs associated with MA‐induced locomotor activation. The average per cent decrease in QTL width between the F2 and the integrated analysis was 65%. Additionally, these QTLs showed a distinct temporal specificity within each session that allowed us to further refine their locations, and identify one QTL with a 1.8‐LOD support interval of 1.47 Mb. Next, we utilized publicly available bioinformatics resources to exploit strain‐specific sequence data and strain‐ and region‐specific expression data to identify candidate genes. These results illustrate the power of AILs in conjunction with sequence and gene expression data to investigate the genetic underpinnings of behavioral and other traits.

Collaboration


Dive into the Greta Sokoloff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Riyan Cheng

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge