Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gretchen A. Meyer is active.

Publication


Featured researches published by Gretchen A. Meyer.


Journal of Biological Chemistry | 2011

Sirtuin 1 (SIRT1) Deacetylase Activity Is Not Required for Mitochondrial Biogenesis or Peroxisome Proliferator-activated Receptor-γ Coactivator-1α (PGC-1α) Deacetylation following Endurance Exercise

Andrew Philp; Ai Chen; Debin Lan; Gretchen A. Meyer; Anne N. Murphy; Amy E. Knapp; I. Mark Olfert; Carrie E. McCurdy; George R. Marcotte; Michael C. Hogan; Keith Baar; Simon Schenk

The protein deacetylase, sirtuin 1 (SIRT1), is a proposed master regulator of exercise-induced mitochondrial biogenesis in skeletal muscle, primarily via its ability to deacetylate and activate peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). To investigate regulation of mitochondrial biogenesis by SIRT1 in vivo, we generated mice lacking SIRT1 deacetylase activity in skeletal muscle (mKO). We hypothesized that deacetylation of PGC-1α and mitochondrial biogenesis in sedentary mice and after endurance exercise would be impaired in mKO mice. Skeletal muscle contractile characteristics were determined in extensor digitorum longus muscle ex vivo. Mitochondrial biogenesis was assessed after 20 days of voluntary wheel running by measuring electron transport chain protein content, enzyme activity, and mitochondrial DNA expression. PGC-1α expression, nuclear localization, acetylation, and interacting protein association were determined following an acute bout of treadmill exercise (AEX) using co-immunoprecipitation and immunoblotting. Contrary to our hypothesis, skeletal muscle endurance, electron transport chain activity, and voluntary wheel running-induced mitochondrial biogenesis were not impaired in mKO versus wild-type (WT) mice. Moreover, PGC-1α expression, nuclear translocation, activity, and deacetylation after AEX were similar in mKO versus WT mice. Alternatively, we made the novel observation that deacetylation of PGC-1α after AEX occurs in parallel with reduced nuclear abundance of the acetyltransferase, general control of amino-acid synthesis 5 (GCN5), as well as reduced association between GCN5 and nuclear PGC-1α. These findings demonstrate that SIRT1 deacetylase activity is not required for exercise-induced deacetylation of PGC-1α or mitochondrial biogenesis in skeletal muscle and suggest that changes in GCN5 acetyltransferase activity may be an important regulator of PGC-1α activity after exercise.


Journal of Cell Science | 2009

Obscurin determines the architecture of the longitudinal sarcoplasmic reticulum

Stephan Lange; Kunfu Ouyang; Gretchen A. Meyer; Li Cui; Hongqiang Cheng; Richard L. Lieber; Ju Chen

The giant protein obscurin is thought to link the sarcomere with the sarcoplasmic reticulum (SR). The N-terminus of obscurin interacts with the M-band proteins titin and myomesin, whereas the C-terminus mediates interactions with ankyrin proteins. Here, we investigate the importance of obscurin for SR architecture and organization. Lack of obscurin in cross-striated muscles leads to changes in longitudinal SR architecture and disruption of small ankyrin-1.5 (sAnk1.5) expression and localization. Changes in SR architecture in obscurin knockout mice are also associated with alterations in several SR or SR-associated proteins, such as ankyrin-2 and β-spectrin. Finally, obscurin knockout mice display centralized nuclei in skeletal muscles as a sign of mild myopathy, but have normal sarcomeric structure and preserved muscle function.


Journal of Biomechanics | 2011

Elucidation of extracellular matrix mechanics from muscle fibers and fiber bundles

Gretchen A. Meyer; Richard L. Lieber

The importance of the extracellular matrix (ECM) in muscle is widely recognized, since ECM plays a central role in proper muscle development (Buck and Horwitz, 1987), tissue structural support (Purslow, 2002), and transmission of mechanical signals between fibers and tendon (Huijing, 1999). Since substrate biomechanical properties have been shown to be critical in the biology of tissue development and remodeling (Engler et al., 2006; Gilbert et al., 2010), it is likely that mechanics are critical for ECM to perform its function. Unfortunately, there are almost no data available regarding skeletal muscle ECM viscoelastic properties. This is primarily due to the impossibility of isolating and testing muscle ECM. Therefore, this note presents a new method to quantify viscoelastic ECM modulus by combining tests of single muscle fibers and fiber bundles. Our results demonstrate that ECM is a highly nonlinearly elastic material, while muscle fibers are linearly elastic.


Connective Tissue Research | 2015

EXTRACELLULAR MATRIX REGULATION IN THE MUSCLE SATELLITE CELL NICHE

Kelsey Thomas; Adam J. Engler; Gretchen A. Meyer

Abstract Increasing evidence points to extracellular matrix (ECM) components playing integral roles in regulating the muscle satellite cell (SC) niche. Even small alterations to the niche ECM can have profound effects on SC localization, activation, self-renewal, proliferation and differentiation. This review will focus on the ECM components that comprise the niche, how they are modulated in health and disease and how these changes are thought to affect SC function. Particular emphasis will be placed on the pathological niche and interventions that aim to restore healthy structure and function, as a better understanding of the interplay between the SC and its environment will drive more targeted and effective therapies.


Journal of Lipid Research | 2012

Skeletal muscle Nur77 expression enhances oxidative metabolism and substrate utilization

Lily C. Chao; Kevin Wroblewski; Olga Ilkayeva; Robert D. Stevens; James R. Bain; Gretchen A. Meyer; Simon Schenk; Leonel Martinez; Laurent Vergnes; Vihang A. Narkar; Brian G. Drew; Cynthia Hong; Rima Boyadjian; Andrea L. Hevener; Ronald M. Evans; Karen Reue; Melissa J. Spencer; Christopher B. Newgard; Peter Tontonoz

Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. Identifying novel regulators of mitochondrial bioenergetics will broaden our understanding of regulatory checkpoints that coordinate complex metabolic pathways. We previously showed that Nur77, an orphan nuclear receptor of the NR4A family, regulates the expression of genes linked to glucose utilization. Here we demonstrate that expression of Nur77 in skeletal muscle also enhances mitochondrial function. We generated MCK-Nur77 transgenic mice that express wild-type Nur77 specifically in skeletal muscle. Nur77-overexpressing muscle had increased abundance of oxidative muscle fibers and mitochondrial DNA content. Transgenic muscle also exhibited enhanced oxidative metabolism, suggestive of increased mitochondrial activity. Metabolomic analysis confirmed that Nur77 transgenic muscle favored fatty acid oxidation over glucose oxidation, mimicking the metabolic profile of fasting. Nur77 expression also improved the intrinsic respiratory capacity of isolated mitochondria, likely due to the increased abundance of complex I of the electron transport chain. These changes in mitochondrial metabolism translated to improved muscle contractile function ex vivo and improved cold tolerance in vivo. Our studies outline a novel role for Nur77 in the regulation of oxidative metabolism and mitochondrial activity in skeletal muscle.


American Journal of Physiology-cell Physiology | 2012

Skeletal muscle fibrosis develops in response to desmin deletion

Gretchen A. Meyer; Richard L. Lieber

Skeletal muscle is a dynamic composite of proteins that responds to both internal and external cues to facilitate muscle adaptation. In cases of disease or altered use, these messages can be distorted resulting in myopathic conditions such as fibrosis. In this work, we describe a mild and progressive fibrotic adaptation in skeletal muscle lacking the cytoskeletal intermediate filament protein desmin. Muscles lacking desmin become progressively stiffer, accumulate increased collagen, and increase expression of genes involved in extracellular matrix turnover. Additionally, in the absence of desmin, skeletal muscle is in an increased state of inflammation and regeneration as indicated by increased centrally nucleated fibers, elevated inflammation and regeneration related gene expression, and increased numbers of inflammatory cells. These data suggest a potential link between increased cellular damage and the development of fibrosis in muscles lacking the cytoskeletal support of the desmin filament network.


Wiley Interdisciplinary Reviews: Systems Biology and Medicine | 2013

Systems analysis of biological networks in skeletal muscle function.

Lucas R. Smith; Gretchen A. Meyer; Richard L. Lieber

Skeletal muscle function depends on the efficient coordination among subcellular systems. These systems are composed of proteins encoded by a subset of genes, all of which are tightly regulated. In the cases where regulation is altered because of disease or injury, dysfunction occurs. To enable objective analysis of muscle gene expression profiles, we have defined nine biological networks whose coordination is critical to muscle function. We begin by describing the expression of proteins necessary for optimal neuromuscular junction function that results in the muscle cell action potential. That action potential is transmitted to proteins involved in excitation–contraction coupling enabling Ca2+ release. Ca2+ then activates contractile proteins supporting actin and myosin cross‐bridge cycling. Force generated by cross‐bridges is transmitted via cytoskeletal proteins through the sarcolemma and out to critical proteins that support the muscle extracellular matrix. Muscle contraction is fueled through many proteins that regulate energy metabolism. Inflammation is a common response to injury that can result in alteration of many pathways within muscle. Muscle also has multiple pathways that regulate size through atrophy or hypertrophy. Finally, the isoforms associated with fast muscle fibers and their corresponding isoforms in slow muscle fibers are delineated. These nine networks represent important biological systems that affect skeletal muscle function. Combining high‐throughput systems analysis with advanced networking software will allow researchers to use these networks to objectively study skeletal muscle systems. WIREs Syst Biol Med 2013, 5:55–71. doi: 10.1002/wsbm.1197


Journal of Biomechanical Engineering-transactions of The Asme | 2011

A Nonlinear Model of Passive Muscle Viscosity

Gretchen A. Meyer; Andrew D. McCulloch; Richard L. Lieber

The material properties of passive skeletal muscle are critical to proper function and are frequently a target for therapeutic and interventional strategies. Investigations into the passive viscoelasticity of muscle have primarily focused on characterizing the elastic behavior, largely neglecting the viscous component. However, viscosity is a sizeable contributor to muscle stress and extensibility during passive stretch and thus there is a need for characterization of the viscous as well as the elastic components of muscle viscoelasticity. Single mouse muscle fibers were subjected to incremental stress relaxation tests to characterize the dependence of passive muscle stress on time, strain and strain rate. A model was then developed to describe fiber viscoelasticity incorporating the observed nonlinearities. The results of this model were compared with two commonly used linear viscoelastic models in their ability to represent fiber stress relaxation and strain rate sensitivity. The viscous component of mouse muscle fiber stress was not linear as is typically assumed, but rather a more complex function of time, strain and strain rate. The model developed here, which incorporates these nonlinearities, was better able to represent the stress relaxation behavior of fibers under the conditions tested than commonly used models with linear viscosity. It presents a new tool to investigate the changes in muscle viscous stresses with age, injury and disuse.


Biophysical Journal | 2010

Theoretical Predictions of the Effects of Force Transmission by Desmin on Intersarcomere Dynamics

Gretchen A. Meyer; Balazs Kiss; Samuel R. Ward; Miklós Kellermayer; Richard L. Lieber

Desmin is an intermediate filament protein in skeletal muscle that forms a meshlike network around Z-disks. A model of a muscle fiber was developed to investigate the mechanical role of desmin. A two-dimensional mesh of viscoelastic sarcomere elements was connected laterally by elastic elements representing desmin. The equations of motion for each sarcomere boundary were evaluated at quasiequilibrium to determine sarcomere stresses and strains. Simulations of passive stretch and fixed-end contractions yielded values for sarcomere misalignment and stress in wild-type and desmin null fibers. Passive sarcomere misalignment increased nonlinearly with fiber strain in both wild-type and desmin null simulations and was significantly larger without desmin. During fixed-end contraction, desmin null simulations also demonstrated greater sarcomere misalignment and reduced stress production compared with wild-type. In simulations with only a fraction of wild-type desmin present, fixed-end stress increased as a function of desmin concentration and this relationship was influenced by the cellular location of the desmin filaments. This model suggests that desmin stabilizes Z-disks and enables greater stress production by providing a mechanical tether between adjacent myofibrils and to the extracellular matrix and that the significance of the tether is a function of its location within the cell.


Journal of Cell Science | 2015

Skeletal muscle intermediate filaments form a stress-transmitting and stress-signaling network

Michelle Palmisano; Shannon N. Bremner; Troy A. Hornberger; Gretchen A. Meyer; Andrea A. Domenighetti; Sameer B. Shah; Balázs Kiss; Miklós Kellermayer; Allen F. Ryan; Richard L. Lieber

ABSTRACT A fundamental requirement of cells is their ability to transduce and interpret their mechanical environment. This ability contributes to regulation of growth, differentiation and adaptation in many cell types. The intermediate filament (IF) system not only provides passive structural support to the cell, but recent evidence points to IF involvement in active biological processes such as signaling, mechanotransduction and gene regulation. However, the mechanisms that underlie these processes are not well known. Skeletal muscle cells provide a convenient system to understand IF function because the major muscle-specific IF, desmin, is expressed in high abundance and is highly organized. Here, we show that desmin plays both structural and regulatory roles in muscle cells by demonstrating that desmin is required for the maintenance of myofibrillar alignment, nuclear deformation, stress production and JNK-mediated stress sensing. Finite element modeling of the muscle IF system suggests that desmin immediately below the sarcolemma is the most functionally significant. This demonstration of biomechanical integration by the desmin IF system suggests that it plays an active biological role in muscle in addition to its accepted structural role.

Collaboration


Dive into the Gretchen A. Meyer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel R. Ward

University of California

View shared research outputs
Top Co-Authors

Avatar

Simon Schenk

University of California

View shared research outputs
Top Co-Authors

Avatar

Adam J. Engler

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugene J. Sato

University of California

View shared research outputs
Top Co-Authors

Avatar

John G. Lane

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Philp

University of Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge